期刊文献+

鱼藤酮诱导PC12细胞损伤作用途径

Way of cell injured induced by rotenone in PC12 cells
下载PDF
导出
摘要 目的探讨鱼藤酮诱导PC12细胞损伤作用的可能途径,为神经防护药物的研发提供理论基础。方法将培养的PC12细胞分为正常对照组和0.5μmol.L-1鱼藤酮实验组,持续作用72 h后MTT法检测细胞存活率、Hoechst33342观测细胞凋亡、提取实验组和对照组细胞的总蛋白,应用荧光差异凝胶电泳系统(Differential Gel Electrophoresis,DIGE)获得差异蛋白点的表达信息,通过MALDI-TOF质谱鉴定差异蛋白点。结果MTT法显示鱼藤酮实验组较正常对照组细胞存活率明显降低(P<0.01);Hoechst33342荧光染色显示鱼藤酮实验组凋亡率明显高于对照组(P<0.01)。DIGE分析软件提示实验组与对照组相比发现三个有意义的差异蛋白。通过质谱分析和数据库检索,鉴定分别为γ-烯醇化酶(γ-enolase)、磷酸丙糖异构酶1(Tpi1)和真核细胞翻译起始因子4A(eIF4A)。结论γ-enolase、Tpi1和eIF4A参与细胞损伤,可能成为神经防护药物作用的靶点。 Objective To explore the way of cell injured induced by rotenone in PC12 cells in order to provide the theoretical basis of neuroprotective drugs. Methods The cultivated PC12 cells were divided into control and 0.5 μmol· L^- 1 rotenone-treated groups. Cell viability was estimated by MTT 72 h after treatment. Cell apoptosis was examined by Hoechst 33342. Proteins were extracted from two cell groups,respectively. The maps of proteins were set up by DIGE system. The altered protein spots were identified with MALDI-TOF MS and database searching. Results MTT showed cell viability decreased significantly in 0.5 μmol·L^-1rotenonetreated group compared with control group ( P 〈 0.01 ). Hoechst33342 fluorescence staining showed that the ratio of apoptosis in rotenone-treated group increased significantly compared with control group( P 〈 0.01 ). DIGE revealed three protein spots were significantly changed in mtenone-treated cells compared with control( P 〈 0.01 ). MALDI-TOF MS analysis and NCBI database searching demonstrated them as γ-enolase, Tpi1 and eIF4A, respectively. Conclusion γ-enolase Tpil and eIF4A may involved in the cytotoxicity, which mybe the target of neuroprotective drugs.
出处 《中国实验诊断学》 2008年第12期1488-1491,共4页 Chinese Journal of Laboratory Diagnosis
关键词 PC12细胞 鱼藤酮 蛋白质组学 PC12 cells rotenone proteomics
  • 相关文献

参考文献2

二级参考文献59

  • 1Merrick W C, Hershey J W B. In: Matthews M B, Sonenberg N,Hershey J W Beds. Translational Control, Cold Spring Harbor, NY:Cold Spring Harbor Laboratory Press, 1996:31 -69
  • 2Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene,1999, 234:187 - 208
  • 3Richter N J, Rogers G W Jr, Hensold J O, Merrick W C. Further biochemical and kinetic characterization of human eukaryotic initiation factor 4H. J Biol Chem, 1999, 274:35415 - 35424
  • 4Pause A, Methot N, Svitkin Y, Merrick W C, Sonenberg N. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J, 1994, 13:1205 ~
  • 5Rogers G W Jr, Lima W F, Merrick W C. Further characterization of the helicase activity of eIF4A. J Biol Chem, 2001, 276:12598 -12608
  • 6Pain V M. Initiation of protein synthesis in eukaryotic cells. Eur J Biochem, 1996, 236:747 - 771
  • 7Hershey J W B, Merrick W C. In: Sonenberg N, Hershey J W B,Mathews M Beds. Translational Control of Gene Expression, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2000:33 -88
  • 8Linder P, Lasko P F, Ashbumer M, Leroy P, Nielsen P J, Nishi K,Schnier J, Slonimski P P. Birth of the D-E-A-D box. Nature, 1989,337:121 - 122
  • 9Huang Y, Liu Z B. The ATPase, RNA unwinding, and RNA-binding activities of recombinant p68 RNA helicase. J Biol Chem, 2002, 277:12810- 12815
  • 10Jankowsky E, Gross C H, Shuman S, Pyle A M. Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science, 2001,291:121 - 125

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部