期刊文献+

基于GA—LSSVR的残差生成器设计 被引量:1

Design of residual error generator based on GA-LSSVR
下载PDF
导出
摘要 设计了基于最小二乘回归型支持向量机(LSSVR)的系统残差生成器,并引入遗传算法(GA)对LSSVR的参数进行优化,通过残差生成器生成的残差可以对系统状态进行有效识别。仿真实验表明:基于遗传优化的LSSVR可以高精度地模拟系统的动态特性,进而生成高精度的故障残差,有效地保证了故障诊断的准确性。 The residual error generator of system is designed based on least square support vector regression (LSSVR) ,and the parameters of LSSVR are optimized by genetic algorithm (GA). The states of system can be identified effectively through the residual error generated by residual error generator. The results of simulative experiments show that the dynamic character of system can be simulated accurately by LSSVR based on genetic optimization,and accurate fault residual error can be generated. The veracity of fault diagnosis is guaranted effectively.
出处 《传感器与微系统》 CSCD 北大核心 2008年第12期94-96,105,共4页 Transducer and Microsystem Technologies
关键词 故障诊断 残差生成器 最小二乘回归型支持向量机 遗传算法 fault diagnosis residual error generator least square support vector regression (LSSVR) genetic algorithm( GA )
  • 相关文献

参考文献4

二级参考文献12

  • 1Vapnik V N. Statistical learning theory[ M]. New York:Wiely,1998.
  • 2Weston J Watkins C. Multi - class support vector machines[ A].Proceedings of ESANN99[ C]. Brussels :1999.
  • 3U KreBel. Pairwise classification and support vector machines[M]. Advances in Kernel Methods -Support Vector Learning, 255 - 258, MITPress, Cambridge, Mas - saehusetts, 1999.
  • 4Platt J C , Cristianini N , Shaawe - Talor J. Large margin DAGs for muhiclass classification [ M ]. Advances in Neural Information Processing Systems. Volume 12. MIT Press,2000.
  • 5Hsu C W , Lin C J. A Comparison of methods for multi-class support vector machines[M]. Taipei : National Taiwan University.
  • 6C L Blake and C J Merz. UCI repository of machine learning databases[ R]. lrvine, CA: University of California, Department of Information and Computer Science, 1998.
  • 7张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 8Schlkopf B, Smola A. A Tutorial on Support Vector Regression [R]. NeuroCOLT2 Technical Report Series NC2-TR-1998-030, October, 1998.
  • 9VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 10Vapnik V N. The nature of Statistical Learning Theory[J], NY: Springer-Verlag, 1995, 张学工译. 统计学习理论的本质. 北京: 清华大学出版社, 2000, 128-134.

共引文献27

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部