期刊文献+

人工免疫的神经网络预报方法及其应用 被引量:2

An artificial immunity-based predictive method for neural networks and its applications
下载PDF
导出
摘要 针对RBF(radial basis function)神经网络在预测铁水含硅量中出现的预测精度低,收敛速度慢的问题,提出了一种基于免疫识别原理的径向基函数神经网络的学习算法。该算法利用人工免疫原理确定高斯基函数的中心和宽度参数,同时将所识别的数据作为抗原,抗体作为抗原的压缩映射并作为神经网络的隐层中心,利用递推最小二乘法(recursion least square,RLS)确定连接权值,提高了RBF神经网络的收敛速度和精度。应用该模型于某大型钢铁厂高炉铁水硅含量预报的实例中,实验结果表明,该模型具有更高的预测精度和更短的训练时间。 A radial basis function (RBF) neural network learning algorithm based on immune recognition was proposed to improve the low forecast precision and the slow convergence speed of such networks. In the algorithm, artificial immunity was used to determine the center and width parameters of the Gauss basis function. The recognized data were regarded as antigens and the compression mapping of antigens were taken as antibodies, i. e., the centers of the hidden layer. The recursion least square algorithm (RLs) was employed to determine the output layer weights. The algorithm improved the convergence speed and precision of the RBF neural networks. The model was applied to the blast furnace of a large iron and steel company. The results show that the model has forecast precision far superior to existing models and requires less training time than they do.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第12期1391-1394,共4页 Journal of Chongqing University
基金 重庆市科委自然科学基金资助项目(CSTC2006BB2430)
关键词 铁水含硅量 RBF神经网络 人工免疫 免疫识别 silicon content in hot metal radial basis function neural network artificial immunity immune recognition
  • 相关文献

参考文献12

  • 1HOFFMANN G W A. Neural network model based on the analogy with the immune system [J].Theory Biology, 1986, 122:33.
  • 2焦李成,杜海峰.人工免疫系统进展与展望[J].电子学报,2003,31(10):1540-1548. 被引量:224
  • 3郭建斌,郭建国.石钢高炉铁水含硅量神经网络预报模型[J].金属材料与冶金工程,2006,34(6):31-35. 被引量:2
  • 4王玉涛,严其艳,杨钢,徐万仁.高炉铁水含硅量的动态神经网络多步预报[J].仪器仪表学报,2006,27(11):1448-1451. 被引量:7
  • 5OMM J B, DING L Y. Selecting radial basis function network centers with recursive orthogonal least squares traininng[J]. IEEE Transactions on Neural Network, 2000, 11(2):306.
  • 6DE C, VON Z. Artificial immune systems: Part Ⅰ basic theory and applications [M]. Campinas: Technical Report-RT DCA, 1999.
  • 7TIMMIS J, HEAL M, HCNT J. Artifiicial immune systemfor data analysis[J]. Knowledge Based Systems, Biosys Le-ms, 2000,55:143-150.
  • 8WALLER M, SAXEN H. Application of nonlinear time series analysis to the prediction of silicon content of pig iron [J].ISIJ International, 2002, 42(3): 316-318.
  • 9OSTERMARK R, SAXEN H. VARMAX-modelling of blast furnace process variables[J]. European Journal of Operational Research, 1996, 90(1): 85-101.
  • 10COSTA BRANCO P J, DENTE J A, VILELAMENDES R. Using immunology principles for faultdetection[J].IEEE Transactions on Industrial Electronics, 2003, 50(2): 362-373.

二级参考文献67

  • 1戴汝为,王珏.关于智能系统的综合集成[J].科学通报,1993,38(14):1249-1256. 被引量:52
  • 2戴汝为,王珏.巨型智能系统的探讨[J].自动化学报,1993,19(6):645-655. 被引量:39
  • 3杨尚宝,杨天钧,董一诚.铁水含硅量预报神经网络模型[J].北京科技大学学报,1995,17(6):524-528. 被引量:15
  • 4陆德源.现代免疫学[M].上海:上海科学技术出版社,1998.14-16.
  • 5学科交叉和技术应用专门小组(美).学科交叉和技术应用[R].北京:科学出版社,1994.43.
  • 6M N O Sadiku. Artificial Intelligence [ J ]. IEEE Potentials, 1989, 8(2) :35 - 39.
  • 7R J Patton, C J Lopez-Toribio, F J Uppal. Artificial intelligence approaches to fault diagnosis[ A]. IEE Colloquium on Condition Monitoring :Machinety, External Structures and Health (Ref. No. 1999/034)[ C]. London:The Institute of Electrical Eagineers, 1999.5/1 - 5/18.
  • 8R Orwig, H Chen, D Vogel, et al. A multi-agent view of strategic planning using group support systems and artificial intelligence [J]. Group Decision and Negotiation, 1997,6( 1 ) : 37 - 59.
  • 9A Christopher, Welty, G Peter, Selfridge. Artificial intelligence and software engineering: Breaking the toy mold [ J ]. Automated Software Engineering. 1997,4(3) :255 - 270.
  • 10Donald Gillies. Book review: Artificial intelligence and scientific method [ J]. Journal of Intelligent and Robotic Systems. 1998,22( 1 ) :87-95.

共引文献230

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部