期刊文献+

单螺杆挤出过程中界面拉伸脉冲效应

PULSE EFFECT OF INTERFACE STRETCH IN SINGLE SCREW EXTRUSION
下载PDF
导出
摘要 基于速度涡量法,推导出单螺杆挤出机内三维流动无因次控制方程,提出一种求解非牛顿流的新方法。采用交错网格对挤出机内的幂律流体流动进行有限体积方法数值模拟,得到了螺槽内的三维速度分布。借助4阶Runge-Kutta方法对流体质点运动轨迹进行数值积分追踪,实现了螺槽内的层流混合过程界面形变的捕捉。发现界面演化过程中螺槽下部不同初始位置及取向的示踪剂界面拉伸总体表现出线性增长规律,但伴随着周期性脉冲效应,越靠近螺槽底部脉冲的幅度越大。当界面取向沿螺槽宽度方向时,表现为等幅正脉冲,周期与流体沿螺槽前进一个螺距周期相同。当界面取向沿螺槽高度方向时,脉冲幅度出现了逐级放大现象。研究结果表明,稳态挤出的混合过程存在着非稳态效应。 The dimensionless control equations of three dimensional flow in single screw extruder is developed in terms of velocity and vertorcity, and then a new method for solving the Non-newtionian flow based on the finite volume method is presented. A staggered grid arrangement is used in which the dependent variables are located at different mesh points in the computational domain. The simulation concerns the incompressible fluid obeying power law properties and the application of finite volume method to the geometrical configuration of channel with aspect ratio equal up to 13. The deformation of the tracer is numerically integrated by the fourth order Runge-Kutta scheme. The evolutions of tracers are captured when time is forward. The interface stretchs of the tracers from different initial positions with different orientations reveal that growth of interfaces fall on the whole onto the linear relations accompanied by periodie pulse effect. The closer the tracer approachs the channel walls, the more obvious the pulse effect is. The positive pulse with the same amplitude appears when the tracer orientation is along the direction of the channel width, which has the same periods as that the tracer move forward one pitch. On the contrary, the pulse amplitude become larger and larger with time when the orientation is along the direction of the channel height. The result shows that non-steady effect occurs in the mixing process during the course of the steady extrusion.
出处 《工程塑料应用》 CAS CSCD 北大核心 2008年第12期24-28,共5页 Engineering Plastics Application
基金 国家自然科学基金项目(10672197)
关键词 单螺杆 挤出 界面拉伸 脉冲效应 周期 single screw, extrusion, interfaces stretch, pulse effect, periodicity
  • 相关文献

参考文献1

二级参考文献31

  • 1Alverez M M,Muzzio F J,Cerbili S,Adrover A,Giona M.Self-similar spatio-temporal structure of intermaterial boundaries in chaotic flows[J].Physics Review Letters,1998,81:3395-3398.
  • 2Tadmor Z,Gogos C G.聚合物加工原理[M].耿孝正,等译.北京:化学工业出版社,1987,539-550.
  • 3Spencer R S,Wiley R M.The mixing of very viscous liquids[J].J Coll Sci,1951,6:133-145.
  • 4Danckwerts P V.The definition and measurement of some characteristics of mixtures[J].Appl Sci Res,1952,Sec A3:279-296.
  • 5Mohr W D,Saxton R L,Jepson C H.Mixing in laminar flow systems[J].Ind Eng Chem,1957,49:1855-1857.
  • 6Ottino J M,Chella R.Laminar mixing of polymeric liquids; A brief review and recent theoretical developments[J].Polym Eng Sci,1983,23(7):357-379.
  • 7Aref A.Stirring by chaotic advection[J].J Fluid Mech,1984,143:1-21.
  • 8Ottino J M,Muzzo F J,Tjahjadi M,et al.Chaos,symmetry,and self-similarity:exploiting order and disorder in mixing processes[J].science,1992,257:754-760.
  • 9Niederkorn T C,Ottino J M.Chaotic mixing of shear-thinning fluids[J].A I Ch E J,1994,40(11):1782-1793.
  • 10Anderson P D,Galaktionov O S,Perters G W M.et al.Chaotic fluid mixing in non-quasi-static time-periodic cavity flows[J].Int J Heat and Fluid Flow,2000,21:176-185.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部