期刊文献+

解决数据样本不平衡性的频繁子图挖掘算法 被引量:5

Algorithm considering imbalance across datasets for mining frequent subgraphs
下载PDF
导出
摘要 传统的图挖掘算法应用到生物数据上有其局限性。根据生物网络的特性,通过引入相对支持度的概念,提出了一种解决数据样本间不平衡性的频繁子图挖掘算法——IFS算法。通过对真实的蛋白质互作网络进行处理,证明该算法是可行的。 Traditional algorithms for frequent subgraphs mining have limits when dealing with biological datasets.Biological network has its own characters.Based on these characters,authors propose a new algorithm considering imbalance across datasets, called IFS(Iterated Function System),for mining frequent subgaraphs by relative support.Through dealing with the real protein interaction networks,it is proved that the algorithm is feasible.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第36期146-149,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60703105) 西北工业大学研究生创新实验中心项目(No.07052)~~
关键词 不平衡性 节点支持度 相对支持度 imbalance vertex support relative support
  • 相关文献

参考文献10

  • 1Hu Haiyan,Yan Xifeng,Huang Yu,et al.Mining coherent dense subgraphs across massive biological networks for functional discovery[J].Bioinformaties, 2005,21 (Suppl 1 ) :I213-I221.
  • 2Rives A W, Galitski T.Modular organization of cellular networks[J]. Proc Natl Acad Sci USA,2003,100(3) : 1128-1133.
  • 3Brun C,Chevenet F,Martin D,et al.Functional classification of proteins for the prediction of cellular function from a protein-protein interaction nctwork[J].Genome Biol, 2003,5 ( 1 ) : R6.
  • 4Samanta M P,Liang S.Predicting protein functions from redundancies in large-scale protein interaction networks[J].Proc Natl Acad Sci USA, 2003,100(22 ) : 12579-12583.
  • 5Inokuchi A,Washio T,Motoda H.An apriori-based algorithm for mining frequent substructures from graph data[C]//Proc of the 2000 Europe Conf on Principle and Practice of Data Mining and Knowledge Discovery(PKDD'00),2000: 13-23.
  • 6Yan Xifeng,Han Jiawei.gSpan:Graph-based substructure patterns minin[C]//Proc of IEEE the 2002 International Conf on Data Mining (ICDM'02), 2002:721-724.
  • 7Yan Xifeng,Han Jiawei.Closegraph:Mining closed frequent graph patterns[C]//Proc of ACM SIGKDD the 2003 International Conf on Data Miningand Knowledge Discovery(KDD'03),2003:286-295.
  • 8Yah Xifeng,Zhou Jasmine,Han Jiawei.Mining closed relational graphs with connectivity constraints[C]//Proc of ACM SIGKDD the 2005 International Conf on Data Mining and Knowledge Discovery (KDD'05),2005 : 324-333.
  • 9Yah Xifeng,Mehan M R,Huang Yu,et al.A graph_based approach to systematically reconstruct human transcriptional regulatory modules[J].Bioinformatics, 2007,23 : I577-I586.
  • 10Karam G,ZaKi M J.Efficiently mining maximal frequent itemsets[C]//Proc of IEEE the 2001 International Conf on Data Mining(ICMD'01 ),2001 : 163-170.

同被引文献33

  • 1鲁慧民,冯博琴,宋擒豹.频繁子图挖掘研究综述[J].微电子学与计算机,2009,26(3):156-161. 被引量:1
  • 2汪卫,周皓峰,袁晴晴,楼宇波,施伯乐.基于图论的频繁模式挖掘[J].计算机研究与发展,2005,42(2):230-235. 被引量:17
  • 3颜跃进,李舟军,陈火旺.一种挖掘最大频繁项集的深度优先算法[J].计算机研究与发展,2005,42(3):462-467. 被引量:20
  • 4王艳辉,吴斌,王柏.频繁子图挖掘算法综述[J].计算机科学,2005,32(10):193-196. 被引量:12
  • 5Inokuchi A, Washio T, Motoda H.Complete mining of frequent patterns from graphs: Mining graph data[J].Machine Learning, 2003,50(3) :324-340.
  • 6Koyanagi J.A new data mining method for CRM[J].Journal of Information Management Institute,2001,42(8):2154-2169.
  • 7Cook J,Holdcr L.Substructurc discovery using minimum description length and background knowlexlge[J].J Artificial Intelligence Research, 1994,12(3) :230-251.
  • 8Yoshida K,Motoda H, Indurkhya N.Graph based induction as a unified learning framcwork[J].Journal of Applied Intelligence, 1994,4( 1 ) :295-326.
  • 9DeRaedt L, Kramer S.The levelwise version space algorithm and its application to molecular fragment finding[C]//Proc of the 17th IJCAI,2001,50(2) :853-859.
  • 10Muggleton S H.Inverse entailment and progol[J].New Generation Computing,Special Issue on Inductive Logic Programming, 1995,13(3) :243-284.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部