摘要
传统的图挖掘算法应用到生物数据上有其局限性。根据生物网络的特性,通过引入相对支持度的概念,提出了一种解决数据样本间不平衡性的频繁子图挖掘算法——IFS算法。通过对真实的蛋白质互作网络进行处理,证明该算法是可行的。
Traditional algorithms for frequent subgraphs mining have limits when dealing with biological datasets.Biological network has its own characters.Based on these characters,authors propose a new algorithm considering imbalance across datasets, called IFS(Iterated Function System),for mining frequent subgaraphs by relative support.Through dealing with the real protein interaction networks,it is proved that the algorithm is feasible.
出处
《计算机工程与应用》
CSCD
北大核心
2008年第36期146-149,共4页
Computer Engineering and Applications
基金
国家自然科学基金(No.60703105)
西北工业大学研究生创新实验中心项目(No.07052)~~