期刊文献+

基于支持向量机的冠心病辅助诊断研究 被引量:2

Studies on appilcation of Support Vector Machine in detection of coronary heart disease
下载PDF
导出
摘要 支持向量机(SVM)是在统计学习理论基础上发展而来的一种新的通用学习方法,较好地解决了有限样本的学习分类问题。用支持向量机的分类算法,选取不同的核函数,构造了支持向量机的不同分类器,并将其应用于冠心病的预测诊断。仿真结果表明,非线性的支持向量机取得了较高的准确率,支持向量机在早期冠心病的诊断中有很大的应用潜力。 Support Vector Machine(SVM) is an efficient method originated from the statistical learning theory.It is powerful in machine learning to solve problems with finite samples.SVM is employed in detecting coronary heart disease and the results are encouraged compared with conventional methods.The accuracy of non-linear SVM classifier is especially high in all kinds of classifiers,which indicates the potential application of SVM in coronary heart disease detection.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第36期221-223,229,共4页 Computer Engineering and Applications
基金 山西省“十一五”规划课题(No.GH-06211) 山西医科大学青年基金资助项目
关键词 支持向量机 核函数 模式识别 冠心病 Support Vector Machine(SVM) kernel function pattern recognition coronary heart disease
  • 相关文献

参考文献15

  • 1Kuulasmaa K,Tunstall-Pedoe H,Dobson A.Estimation of contribution of changes in classic risk factors to trends in coornyar-event rates across the who monica project populations[J].Laneet,2000,355: 675-687.
  • 2Krishnapuram B,Carin L.Joint classifier and feature optimization for cancer diagnosis using gene expression data [C]//Alexander Hartemink J.Proceeding of the Seventh Annual International Conference on Computeational Mollecular Biology,2003.
  • 3Cristinaini N,Shwae-Tyalor J.An introduction to support vector machines[M].[S.l.] : Cambridge University Perss, 2000.
  • 4Gunn.Support vector machines for classification and regression,ISIS Technical Report[R].Image Speech & Intelligent Systems GroPu, University of Southampton, 1997.
  • 5Vapnik V N.Statistical learning theory[M].New York:Wiley, 1998.
  • 6付岩,王耀威,王伟强,高文.SVM用于基于内容的自然图像分类和检索[J].计算机学报,2003,26(10):1261-1265. 被引量:54
  • 7Gestel T V.Financial time series prediction using least squares support vector machines within the evidence framework [J].IEEE Trans on Neural Networks,2001,12(4):809-821.
  • 8Suykens J.Nonlinear modeling and support vector machines [C]// IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, 2001 : 287-294.
  • 9Kruif B J,Vries T J A.On using a support vector machine in learning feed-forward control[C]//Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics,Coma, Italy, 2001 : 272-277.
  • 10Cristianini N,Taylor J S.An introduction to support vector machines and other kernel-based learning methods[M].New York: Cambridge University Press,2000.

二级参考文献15

  • 1Burkhardt H, Siggelkow S. Invariant features for discriminating between equivalence classes. In:Nonlinear Model-based Image Video Processing and Analysis. NY: John Wiley and Sons,2000.
  • 2Scholkopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.Cambridge, Mass: MIT Press, 2002.
  • 3Vapnik V N. The Nature of Statistical Learning Theory. NewYork: Springer-Verlag, 2000.
  • 4Scholkopf B, Burges C J C, Smola A J. Advances in Kernel Methods—Support Vector Learning. Cambridge, MA: MIT Press, 1999.
  • 5Smeulders A, Worring M et al. Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12) : 1349~ 1380.
  • 6Flickner M et al. Query by image and video content: The QBIC system. IEEE Computer, 1995,28(9) : 23 ~32.
  • 7Bach J R, Fuller C, Gupta Aet al. Virage image search engine: an open framework for image management. SPIE Storage and Retrieval of Image and Video DataBases, 1996,4:76 ~87.
  • 8Smith J, Chang S F. VisualSEEK: A fully automated contentbased image query system. In: Proceedings of the 4th ACM Multimedia Conference,Boston MA, USA, 1996.87~98.
  • 9Vailaya A, Figueiredo M, Jain A, Zhang H-J. A Bayesian framework for semantic classification of outdoor vacation images. In: Proceedings of SPIE:Storage and Retrieval for Image and Video Databases VII, San Jose, CA, USA, 1999,3656:415~426.
  • 10Lipson P, Grimson E, Sinha P. Configuration based scene classification and image indexing. In: Proceedings of the 16th IEEE Conference on Computer Vision and Pattern Recognition,Puerto Rico, 1997. 1007~1013.

共引文献53

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部