摘要
针对CT影像灰度动态范围宽、对比度差的问题,提出一种基于局部特征分析的低剂量CT(Low-dose Computed Tomography,LDCT)影像增强算法.算法通过对影像全局和局部统计特征的分析,构造非线性变换函数,实现对活动子块所对应区域的局部动态范围拉伸.选用两组不同采集协议CT影像进行的对比实验表明,算法实现简捷,可有效增强影像中的细部解剖结构,并可较好地抑制LDCT影像中的线性伪影.算法已被用于肺癌计算机辅助诊断系统的预处理过程.
In order to improve the intensity and contrast qualities of CT (Computed Tomography) images in clinic application, this paper proposed a fast and smart low-dose CT images contrast enhancement algorithm based on local feature analysis. The method based on creating active sub-blocks with analyzing the local static feature for each local region. Then, perform a local modified contrast stretching according to an adaptive transfer function within the image region corresponds with the sub-block. The experimental results of two sets CT images with different acquisition protocol (one with 200-250mA tube current, and another with 80mA) show that the proposed algorithm provides a flexible and efficient way for low-dose CT image enhancement, enhances the detail anatomic structure effectively, and constrains the linear artifacts in low-dose CT images preferably than general method. Now, the method is used as a pre-processing procedure in a Lung Cancer CAD system.
出处
《小型微型计算机系统》
CSCD
北大核心
2008年第12期2291-2295,共5页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(60441004,60671050)资助
沈阳市科学技术计划项目(1063297-1-00)资助
辽宁省教育厅科学研究计划项目(05L322)资助
关键词
对比度增强
LDCT影像
局部统计特征
计算机辅助诊断
contrast enhancement
low-dose CT images
local statistic feature
computer-aided diagnosis