期刊文献+

基于局部特征分析的LDCT增强算法

Novel Algorithm for Low-dose CT Image Enhancement Based on Local Feature Analysis
下载PDF
导出
摘要 针对CT影像灰度动态范围宽、对比度差的问题,提出一种基于局部特征分析的低剂量CT(Low-dose Computed Tomography,LDCT)影像增强算法.算法通过对影像全局和局部统计特征的分析,构造非线性变换函数,实现对活动子块所对应区域的局部动态范围拉伸.选用两组不同采集协议CT影像进行的对比实验表明,算法实现简捷,可有效增强影像中的细部解剖结构,并可较好地抑制LDCT影像中的线性伪影.算法已被用于肺癌计算机辅助诊断系统的预处理过程. In order to improve the intensity and contrast qualities of CT (Computed Tomography) images in clinic application, this paper proposed a fast and smart low-dose CT images contrast enhancement algorithm based on local feature analysis. The method based on creating active sub-blocks with analyzing the local static feature for each local region. Then, perform a local modified contrast stretching according to an adaptive transfer function within the image region corresponds with the sub-block. The experimental results of two sets CT images with different acquisition protocol (one with 200-250mA tube current, and another with 80mA) show that the proposed algorithm provides a flexible and efficient way for low-dose CT image enhancement, enhances the detail anatomic structure effectively, and constrains the linear artifacts in low-dose CT images preferably than general method. Now, the method is used as a pre-processing procedure in a Lung Cancer CAD system.
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第12期2291-2295,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60441004,60671050)资助 沈阳市科学技术计划项目(1063297-1-00)资助 辽宁省教育厅科学研究计划项目(05L322)资助
关键词 对比度增强 LDCT影像 局部统计特征 计算机辅助诊断 contrast enhancement low-dose CT images local statistic feature computer-aided diagnosis
  • 相关文献

参考文献17

  • 1Swensen S J, Jett J R, Hartman T E. Lung cancer screening with CT: mayo clinic experience[J]. Radiology, 2003, 226(3): 756-761.
  • 2Diederich S, Wormanns D, Semik M. Screening for early lung cancer with low-dose spiral CT: prevalence in 817 asymptomatic smokers[J]. Radiology, 2002, 222(3): 773-781.
  • 3Nawa T, Nakagawa T, Kusano S. Lung cancer screening using low-dose spiral CT[J]. Chest, 2002, 122(1): 15-20.
  • 4Li F, Sone S, Abe H. Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings [J].Radiology, 2002, 225(3) : 673-683.
  • 5Conzalez R C, Woods R E. Digial image processing[M]. New Jerseys Prentice-Hall, Inc. , 2001.
  • 6Stark J A. Adaptive image contrast enhancement using generalizations of histogram equalization[J].IEEE Trans. on Image Processing, 2005, 9(5): 889-896.
  • 7Yu Z, Bajaj C. A fast and adaptive method for image contrast enhancement[C].In:Proc. of ICIP'04, May 2004, 2, 1001- 1004.
  • 8Kim J-Y, Kim L-S, Hwang S-H. An advanced contrast en- hancement using partially overlapped sub-block histogram equalization[J].IEEE Trans. on Circuits and Systems for Video Technology, 2001, 11(4):475-484.
  • 9Jen T C, Wang S J. Generalized histogram equalization based on local charaeteristics[C].IEEE International Conference on Image Processing, 2005, 2877-2880.
  • 10T Ya-fei, Wan Qing-tao, Wu Feng-jun. Local histogram equalization based on the minimum brightness error[C]. In : Proc. of 4th International Conference on Image and Graphics (ICIG 2007), 2007, 58-61.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部