期刊文献+

话者识别的信道补偿 被引量:7

Model Session Variability in Speaker Verification
下载PDF
导出
摘要 在文本无关的说话人识别中,训练与测试语音中信道环境的差异是影响其性能最重要的因素.近年来,利用因子分析对信道建模成为说话人识别领域的重要方法,大大降低了说话人确认的错误率,但运算复杂度限制了实时的应用.本文介绍了一种简化的因子分析方法:首先在混合高斯模型的模型域训练信道空间,然后在特征域进行信道补偿,得到的新特征可用于各种系统.在NIST2006的数据库上,利用本文的方法相对基线系统在等错误率上有31%的降低. In the text-independent speaker recognition systems, the variability of the channel and environment is the most important factors affecting the performance. More recently, factor analysis has been proposed to model session variability and has provided impressive reductions in verification error rates, but the computation load prevents its application in real-time cases. In this paper, we introduce a simplified factor analysis technology: At first the channel sub-space is trained in the Gaussian Mix Model domain, then the session variability is compensated in feature domain. The transformed feature can be used by any other systems. In the NIST 2006 SIRE corpus, the equal error rate(EER) of the proposed system can reduce by 31% against the baseline GMM system.
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第12期2344-2347,共4页 Journal of Chinese Computer Systems
关键词 说话人识别 联合因子分析 信道补偿 本征信道 超向量 speaker recognition factor analysis channel compensation eigenchannel supervector
  • 相关文献

参考文献12

  • 1Douglas A,Reynolds ,Thomas F,et al. Speaker verification using adapted gaussian mixture models[A]. Digital Signal Processing 10[M]. Academic Press, 2000,19-41.
  • 2Bing Xiang, Upendra V Chaudhari, Ji r'i Navr'atit. Short-time gaussianization for robust speaker verification[C]. Proc. IEEE ICASSP'02, 2002,681-684.
  • 3Hermansky H, Morgan N, Bayya A,et al. RASTA-PLP speech analysis[R]. In ICSI Technical Report TR-91-069, Berkeley, California.
  • 4Reynolds D A. Channel robust speaker verification via feature mapping[C]. Proc.ICASSP, 2003,53-56.
  • 5Wei Wu, Thomas Fang Zheng, Xu Ming-xing. Cohort-based speaker model synthesis for channel robust speaker recognition[C]. ICASSP'06, May 14-19, 2006, Toulouse, France, I-893- 896.
  • 6Patrick Kenny,Boulianne G,Ouellet P,etal. Speaker and session variability in GMM-based speaker verificatlon[J].IEEE Transactions on Audio, Speech and Language Processing, May 2007,15(4):1448-1460.
  • 7Kenny P,Boulianne G,Dumouchel P. Eigenvoice modeling with sparse training data[J].IEEE Trans. On Speech and Audio Processing, 2005,13(3): 345-359.
  • 8Vogt R, Baker B, Sridharan S. Modeling session variability in text-independent speaker verification[C]. Proc. INTERSPEECH- 2005,2005,3117-3120.
  • 9Solomonoff A,Campbell W M,Boardman I. Advances in channel compensation for SVM speaker recognition[C]. Proc. ICASSP 2005,629-632.
  • 10Reynolds D. Comparison of background normalization methods for text-independent speaker verification[J].In Eurospeech, 1997, 2,963-966.

同被引文献53

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部