期刊文献+

两个或多个几何平均价格的最小或最大值期权的定价

Pricing Options on th Minimum or Maximum of Two or Several Geometric Average Prices
原文传递
导出
摘要 两个或多个几何平均价格的最小或最大值期权是金融领域极具应用前景的新型复合期权.提出了一种新方法,简单而巧妙地得到了两个几何平均价格的最小值期权价格的解析公式.将该法直接推广,首次得到多个几何平均价格的最小和最大值期权的解析公式.首次给出的数值算例表明两个几何平均价格的最小值期权要比相应的最大值期权便宜,而它们都要比两资产的最大值期权便宜.若考虑红利率,则它们两者的价格都会减少. The option on the minimum or maximum of two or several average prices is a kind of exotic compound options which has great applied prospects in the financial area. A new approach is developed in this paper to simply and skillfully obtain an analytical formula for the price of the option on the minimum of two geometric average prices. Furthemore, this method can be directly extended to price the options on the minimum and maximum of several geometric average prices and the according closed-form formulas are first derived. Numerical evidence is first given to show that the option on the minimum of two geometric average prices is cheaper than its counterpart maximum option and they are both cheaper than the option on the maximum of two assets. However, the prices of the options on the minimum and maximum of two geometric average prices will both decrease if dividends are considered.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第24期95-102,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金资助项目(70873012)
关键词 两个几何平均价格的最小或最大值期权 亚洲期权 平价公式 options on the minimum or maximum of two geometric average prices Asian options parity formula
  • 相关文献

参考文献14

  • 1Wu X, Zhang J E. Options on the minimum or the maximum of two average priees[J]. Review of Derivatives Research, 1999,3 : 183-204.
  • 2Datey J Y, Gauthier G, Simonato J G. The performance of analytical approximations for the computation of asian quanto-basket option prices[J]. Multinational Finance Journal,2003,7(1&2):55-81.
  • 3Deelstra G, Liinev J, Vanmaele M. Bounds for the price of arithmetic basket and asian basket options[J]. Applied Probability Trust, Nov,2002.1-21.
  • 4Zvan R, Forsydl P A, Vetzal K R, Discrete asian barrier options[J]. Journal of Computational Finance, 1999, 3(1) :41-67.
  • 5Johnson H. Options on the maximum or the minimum of several assets[J]. Journal of Financial and Quantative Analysis, Sep,1987,22(3) :277-283.
  • 6Stultz R M. Options on the minimum or the maximum of two risky assets[J]. Journal of Financial Economics, July, 1982,10:161-185
  • 7Boyle P P, Evnine J J, Gibbs S. Numerical evaluation of multivariate contingent claims[J]. The Review of Financial .Study, 1989,2(2): 241- 250.
  • 8Boyle P P, Tse Y K. An algorithm for computing values of options on the maximum or minimum of several assets[J]. Journal of Financial and Quantative Analysis, June,1990,25(2):215-227.
  • 9Detemple J, Feng S, Tian W. The valuation of american call options on the minimum of two dividend-paying assets[J]. The Annals of Applied Probability, 2003,13 (3):953-983.
  • 10Cherubini U, Luciano E. Multivariate option pricing with copulas [R]. International Center for Economics Research, Working paper, Jan, 2002.

二级参考文献17

  • 1叶中行 林建忠.数理金融--资产定价与金融决策理论[M].北京:科学出版社,2000..
  • 2Kemma A G Z, Vorst A C F. A pricing method for options based on average asset values[J]. Journal of Banking and Finance,1990, 14(1): 113-129.
  • 3Lapeyre B, Teman E. Competitive Monte Carlo Methods for Pricing Asian Options[R]. CERMICS, Ecole Nationale des Points et Chaussees, 1999.
  • 4Vazquez-Abad F J, Dufresne D. Accelerated simulation for pricing Asian options[J]. Proceedings of the 1998 Winter Simulation Conference, 1998. 1493-1500.
  • 5Hull J, White A. Efficient procedures for valuing European and American path-dependent options[J]. Journal of Derivatives, 1993,Fall: 21-31.
  • 6Ritchken P, Sankarasubramanian L, Vijh A M. The valuation of path dependent contracts on the average[J]. Management Science,1993, 39(10): 1202-1213.
  • 7Meyer G H. On pricing American and Asian options with PDE methods[J]. Acta Mathematics University Comeniance, 2001, LXX(1): 153-165.
  • 8Dewyrne J N, Wilmott P. A note on average rate options with discrete sampling[J]. Siam Journal of Applied Mathematics, 1995,55(1): 267-276.
  • 9Rogers L C G, Shi R C. The values of an Asian option[J]. Journal of Applied Probability, 1995, 32: 1077-1088.
  • 10Vecer J. A new PDE approach for pricing arithmetic average Asian options[J]. The Journal of Computational Finance, 2001, 4(4): 105-113.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部