期刊文献+

成分数据相关系数的计算方法 被引量:1

Computing Correlation Coefficient of Compositional Data
原文传递
导出
摘要 成分数据具有非常复杂的数学性质,很多传统的统计分析方法对其是失效的,因此,在研究中必须采用特殊处理和专门技术.着重讨论了成分数据相关系数的计算方法,由于普通数据的相关系数计算方法只适用于两组单变量数据,而传统的典型相关分析又鉴于成分数据的特殊性质而不能直接使用,故结合logratio变换和典型相关分析技术,提出了一种针对成分数据的相关系数计算方法,成功地解决了这一问题. Many traditional statistical methods are not available to compositional data for their complex mathematical characteristics. Therefore special tools should be used in the analysis of related problems. This paper focuses on the correlation coefficient of compositional data. Since the algorithm of correlation coefficient of common data is not adaptive to multi-variables data, and traditional canonical correlation analysis cannot be directly applied to compositional data, a new approach is presented which combines logratio transformation and canonical correlation analysis, and succeeds in computing correlation coefficient of compositional data.
作者 龙文 王惠文
出处 《数学的实践与认识》 CSCD 北大核心 2008年第24期152-157,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(70371007 70531010 70621001)
关键词 成分数据 相关系数 典型相关分析 compositional data correlation coefficient canonical correlation analysis
  • 相关文献

参考文献7

  • 1Ferrers N M. An Elementary Treatise on Trilinear Coordinates[M]. London: Macmillan,1866.
  • 2Pearson K. Mathematical contributions to the theory of evolution: On a form of spurious correlation which may arise when indices are used in the measurement of organs [C]. Proceedings of the Royal Society, 1897,60:489-498.
  • 3Quenouille M H. The Design and Analysis of Experiments[M]. London: Griffin,1953.
  • 4Aitchison J. The Statistical Analysis of Compositional Data[M]. London: CHAPMAN AND HALL,1986.
  • 5Michal Kucera, Bjorn A Malmgren. Logratio transformation of compositional data-a resolution of the constant sum constraint[J]. Marine Micropaleontology,1998,34(1-2):117-120.
  • 6王惠文,张志慧,Tenenhaus M.成分数据的多元回归建模方法研究[J].管理科学学报,2006,9(4):27-32. 被引量:26
  • 7Hotelling H. The most predictable criterion[J]. J Educ Psych, 1935, (26):139-142.

二级参考文献6

  • 1Ferrers N M.An Elementary Treatise on Trilinear Coordinates[M].London:Macmillan,1866.
  • 2Aitchison J.The Statistical Analysis of Compositional Data[M].London:CHAPMAN AND HALL,1986.
  • 3Wold H.Partial Least Squares,Encyclopedia of Statistical Sciences,vol.6,Kotz,S & Johnson,N.L.(Eds),New York:John Wiley & Sons,1985.581-591.
  • 4Lohmoller J B.Latent Variables Path Modeling with Partial Least Squares[M].Heildelberg:Physica-Verlag,1989.
  • 5Joreskog K G.A general method for analysis of covariance structure[J].Biometrika,1970,57:239-251.
  • 6王惠文,黄薇.成分数据的线性回归模型[J].系统工程,2003,21(2):102-106. 被引量:26

共引文献25

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部