期刊文献+

一类具有时滞和Holling Ⅲ型功能性反应的捕食模型的稳定性和Hopf分支 被引量:5

Stability and Hopf Bifurcation of a Predator-Prey Model with Time Delay and Holling Type-Ⅲ Functional Response
原文传递
导出
摘要 研究一类具有时滞和Holling Ⅲ型功能性反应的捕食模型的稳定性和Hopf分支.以滞量为参数,得到了系统正平衡点的稳定性和Hopf分支存在的充分条件,给出了确定Hopf分支方向和分支周期解的稳定性的计算公式. A predator-prey model with time delay and Holling type-III functional response is investigated. By choosing time delay as the bifurcation parameter and analyzing the associated characteristic equation of the linearized system, the linear stability of the system is investigated and Hopf bifurcations are established. In particular, the formulae determining the direction of bifurcations and the stability of bifurcating periodic solutions are given by using the normal form theory and center manifold theorem.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第24期173-179,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金资助项目(10671209)
关键词 时滞 HollingIII型功能性反应 稳定性 HOPF分支 time delay Holling type-III functional response stability Hopf bifurcation
  • 相关文献

参考文献7

  • 1陈均平 张洪德.具有功能反应的食饵-捕食者两种群模型的定性分析.应用数学和力学,1986,7(1):73-80.
  • 2Kuang Y. Delay Differential Equations with Applications in Population Dynamics [M]. New York: Academic Press, 1993.
  • 3Cooke K. Grossman Z. Discrete delay, distributed delay and stability switcbes[J]. J Math Anal Appl, 1982,86: 592-627.
  • 4Hassard B, Kazarinoff N, Wan Y H. Theory and Applications of Hopf Bifurcation[M]. Soc Lect Notes, Series, 41. Cambridge; Cambridge Univ Press,1981.
  • 5Hale J, Lunel S V. Introduction to Functional Differential Equations[M]. New York:Springer-Verlag, 1993.
  • 6Kazarinoff N, Wan Y H, Van den Driessche P. Hopf bifurcation and stability of periodic solutions of differentialdiffrenee and integro-diffrence equations[J]. J Inst Math Appl,1978,21:461-477.
  • 7Meng X Z, Han D, Song Y L. Stability and bifurcation in a non-kolmogorov type prey-predator system with time delay[J]. Mathematical and Computer Modelling, 2005,41 : 1445-1455.

共引文献4

同被引文献40

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部