摘要
研究了RN中一般区域上的一族带非线性梯度项的双重退缩抛物方程解的Blow-up性质.通过构造适当的辅助函数,利用特征函数法和不等式技巧,给出了其齐次Dirichlet边值问题的正解产生Blow-up的充分条件:利用能量方法,证明了其Cauchy问题非平凡整体解的不存在性.方法也适用于研究其它带非线性源的退缩非线性抛物方程解的Blow-up问题.
The blow-up behavior of positive solutions for a family of Doubly Degenrate Parabolic equations with nonlinear gradient term in general domain in R^N was studied. By constructing an auxiliary function and using the eigenfunction method and inequality technic on it, the sufficient conditions for blow-up positive solutions of the equations with homogeneous Dirichlet boundary conditions were obtained, and then the nonexistence of global solutions of the Cauchy problem was proved by using the energy method. The methods in here could be applied to a wide class of nonlinear degenerate parabolic equations with nonlinear sources.
出处
《数学的实践与认识》
CSCD
北大核心
2008年第24期207-212,共6页
Mathematics in Practice and Theory
基金
福建省自然科学基金计划资助项目(Z0511048)
关键词
双重退缩抛物方程
梯度项
正解
Blow—up
doubly degenrate parabolic equations
gradient term
positive solutions
blow-up