期刊文献+

广义随机KP方程的椭圆周期解

Elliptic Periodic Solutions of the Generalized Stochastic KP Equation
原文传递
导出
摘要 利用Hermite变换和Jacobi椭圆函数展开法研究(2+1)-维广义随机Kadomtsev-Petviashvili方程,并给出了它的随机椭圆周期解及随机孤立波解. By using Hermite transformation and Jacobi elliptic function expansion method, we obtain some stochastic solutions of including stochastic elliptic periodic the generalized stochastic Kadomtsev-Petviashvili equation, solutions and stochastic solitary wave solutions.
作者 高娃 长龙
出处 《数学的实践与认识》 CSCD 北大核心 2008年第24期219-224,共6页 Mathematics in Practice and Theory
基金 内蒙古自然科学基金(200711020118) 国家自然科学基金(10702023)
关键词 广义随机KP方程 HERMITE变换 JACOBI椭圆函数展开法 随机椭圆周期解 generalized stochastic KP equation Hermite transformation Jaeobi elliptic function expansion method~ stochastic elliptic periodic solution
  • 相关文献

参考文献14

  • 1Wadati M. Stochastic korteweg-de veries equation[J]. J Phys Soe Jpn,1983,52:2642.
  • 2Holden H.Φsendal B, Ubφe J, Zhang T. Stochastic Partial Differential Equations [M]. Boston: Birhkauser, 1996.
  • 3De Bouard A, Debussche A. White noise driven Korteweg-devries equation[J]. J Funct Anal,1999,169:532.
  • 4Printems J. The stochastic Korteweg de vries equation in L(R^2)[J].J Differen Equat, 1999, 153:338.
  • 5Xie Y C. Exact solutions for stochastic KdV equations[J]. Phys Lett A,2003,310~161.
  • 6Chen Y, Wang Q, Li B. The stochastic soliton-like solutions of stochastic KdV cquations[J]. Chaos, Solitons and Fractals,2005,23: 1465.
  • 7韦才敏,夏尊铨,田乃硕.广义随机KdV方程新的精确类孤子解[J].物理学报,2005,54(6):2463-2467. 被引量:4
  • 8Xie Y C. Exact solutions of tile Wick-lype stochastic Kadomlsev Petviashvili equat ons[J]. Chaos, Solitons and Fractals, 2004,21:473.
  • 9高娃.(2+1)-维Wick类型随机广义KP方程的类孤子解[J].原子与分子物理学报,2005,22(4):757-761. 被引量:2
  • 10Wei C M, Xia Z Q, Tian N S. Exact solutions to generalized Wick-type stochastic Kadomtscv-Pctviashvili equation[J]. Chaos, Solitons and Fractals, 2006,29 (:3) : 1 178.

二级参考文献56

  • 1LIU XIQIANG.EXACT SOLUTIONS OF THE VARIABLE COEFFICIENT KdV AND SG TYPE EQUATIONS[J].Applied Mathematics(A Journal of Chinese Universities),1998,13(1):25-30. 被引量:25
  • 2来娴静,张解放.两类2+1维非线性波动方程的线性叠加解[J].物理学报,2004,53(12):4065-4069. 被引量:4
  • 3Liu Xiqiang Jiang SongGraduate School, China Academy of Engineering and Physics, P.O. Box 2101, Beijing 100088,Dept. of Math., Liaocheng Teachers Univ., Shandong 252000. Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beiji.EXACT SOLUTIONS FOR GENERAL VARIABLE-COEFFICIENT KdV EQUATION[J].Applied Mathematics(A Journal of Chinese Universities),2001,16(4):377-380. 被引量:8
  • 4Zhu Zuonong. On the KdV-type equation with variable coeffieients.Journal of Physics A:Math Gne, 1995,28:5673-5684.
  • 5Zhu zuonong. Painlevé property, Backlund transformation, Lax pair and soliton-like solution for a varianble coefficient KP equation.Physics Letters A, 1993,182:277-- 281.
  • 6Zhang J F 2002 Chin. Phys. 11 651.
  • 7Zhang J F 2002 Chin. Phys. 11 425.
  • 8Zhu Z N 1993 Phys. Lett. A 182 277.
  • 9Yomba E 2004 Chaos, Solitons & Fractals 21 75.
  • 10Elwakil S A, El-labany S K, Zahran M A et al 2004 Chaos,Solitons & Fractals 19 1083.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部