期刊文献+

时间测度上具有时滞基于半比率的捕食者-食饵扩散系统的周期解 被引量:9

Periodic Solutions for a Delayed Semi-ratio-dependent Predator-prey Diffusion System on Time Scales
原文传递
导出
摘要 在时间测度上研究一类具有时滞和基于半比率且有功能性反应的两种群捕食者-食饵扩散系统,利用Mawhin重合度理论建立了这类系统的周期解存在的一个充分性判据.从而使这一类系统的连续与离散情形即相应的微分方程和差分方程的周期解存在性问题得到了统一研究. This paper investigates the existence of periodic solutions of a semi-ratio-dependent predator-prey diffusion syslem with functional responses and time delays on time scales. By using a continuation theorem based on coincidence degree theory, we obtain sufficient criteria for the existence of periodic solutions for the system. Therefore, the methods are unified to provide the existence of the desired solutions for the continuous differential equations and discrete difference equations.
作者 刘振杰
出处 《数学的实践与认识》 CSCD 北大核心 2008年第24期235-239,共5页 Mathematics in Practice and Theory
基金 哈尔滨学院学科发展研究基金资助项目(HXK200716) 黑龙江省教育厅科学技术研究项目(11513043)
关键词 时间测度 时滞 捕食者-食饵系统 周期解 重合度 time scale time delay predalor-prey system periodic solution coincidence degree
  • 相关文献

参考文献8

  • 1Leslie P H, Gower J C, The properties of a stochastic model for the predator-prey type of interaction between two species[J]. Biometrika, 1960,47 : 219-234.
  • 2Wang Q, Fan M. Wang K. Dynamics of a class of nonautonomous semi-ratio-dependent predator-prey systems with functionalresponses[J]. J Math Anal Appl,2003.278(2):443-471.
  • 3Bohner M, Fan M, Zhang J. Existence of periodic solutions in predator-prey and competition dynamic systems[J]. Nonlinear Analysis : Real World Applications ,2006,7(5): 1193-1204.
  • 4Freedman H I. Deterministic Mathematical Models in Population Ecology [M ]. Monograph Textbooks Pure Applied Math, Marcel Dekker, New York, 1980,57.
  • 5Fazly M, Hesaaraki M. Periodic solutions for a discrete time predator-prey system with monotone functional responses[J]. C R Acad Sci Paris, Set I,2007,345(4):199-202.
  • 6Ding X, Lu C, Liu M. Periodic solutions for a semi-ratio-dependenl predator-prey system with nonmonotonic functional response and time delay[J]. Nonlinear Analysis: Real World Applications.2008,9(3):762-775.
  • 7Huo H. Periodic solutions for a semi-ratio-dependent predator-prey system with functional responses[J]. Appl Math Letters,2005.18(3):313-320.
  • 8Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[M]. Springer, Berlin,1977.

同被引文献75

  • 1张炳根.测度链上微分方程的进展[J].中国海洋大学学报(自然科学版),2004,34(5):907-912. 被引量:32
  • 2Fan Meng, Kuang Yang. Dynamics of a nonautonomous predator-prey system with the Beddington- DeAngelis functional response[J]. J Math Anal Appl, 2004, 295(1): 15-39.
  • 3Fan Meng, Wang Ke. Periodicity in a delayed ratio-dependent predator-prey system[J]. J Math Anal Appl, 2001, 262(1): 179-190.
  • 4Huo Haifeng. Periodic solutions of a semi-ratio-dependent predator-prey system with functional response[J]. Appl Math Lett, 2005, 18: 313-320.
  • 5Fan Meng, Agarwal S. Periodic solutions for a class of discrete time competition system[J]. Nonlinear Stud, 2002, 9(3): 249-261.
  • 6Fan Meng, Wang Qian. Periodic solutions a class of nonautonomous discrete time semi-ratiodependent predator-prey system[J]. Discrete Contin Dynam Systems:Ser B, 2004, 4(3): 563-574.
  • 7Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications[M]. Boston: Birkhauser, 2001.
  • 8Martin Bohner, Fan Meng, Zhang Jimin. Existence of periodic solutions in predator-prey and competition dynamic system[J]. Nonlinear Analysis: Real world Applications, 2006, 7: 1193-1204.
  • 9Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equation[M]. New York: Springer-Verlag, 1997.
  • 10Ding W, Han M. Dynamic of a non-autonomous predator--prey system with infinite delay and diffusion [J]. Comput Math Appl, 2008, 56(5): 1 335-1 350.

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部