期刊文献+

基于经验模式分解和独立分量分析的单导少次EP信号提取 被引量:2

Single EP Signal Few-trial Extraction Based on Empirical Model Decomposition and Independent Component Analysis
下载PDF
导出
摘要 EP信号的单导少次提取一直是生物医学信号处理领域倍受关注的问题。本研究利用经验模式分解(EMD),把单导脑电信号(EP+EEG)分解成多个基本模式分量(IMF)之和,进而选取合适的基本模式分量或者它们的组合,构成1导或多导参考信号,再利用独立分量分析(ICA)成功提取出了期望的EP信号,从而克服了ICA需要多导观测信号的要求。仿真实验证明了本方法的有效性。 Single evoked potential (EP) signal few-trial extraction is always the interesting field in biomedical signal processing. We decomposed a single signal (EP + EEG) into several intrinsic mode functions (IMF) with empirical model decomposition (EMD). Then a proper IMF or a combination of a few IMFs was selected to create one or more reference signal ( s), and the expected EP signal was extracted by independent component analysis ( ICA). The simulation results demonstrated that the proposed method was efficient for extracting EP signal with single noise contaminated signal.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2008年第6期817-821,共5页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(30570475) 教育部博士点基金资助项目(20050141025)
关键词 经验模式分解 独立分量分析 EP信号 empirical model decomposition independent component analysis EP signal
  • 相关文献

参考文献10

  • 1Kong Xuan, Qiu Tianshuang. Latency change estimation for evoked potentials via frequency selective adaptive phase spectrum analyzer [J]. IEEE Trails on Biomedical Engineering, 1999, 46(8): 1004 - 1012.
  • 2洪波,唐庆玉,杨福生,潘映辐,陈葵,铁艳梅.ICA在视觉诱发电位的少次提取与波形分析中的应用[J].中国生物医学工程学报,2000,19(3):334-341. 被引量:52
  • 3Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Trans Neural Networks, 1999, 10 (3) : 626 - 634.
  • 4朱常芳,胡广书.诱发电位快速提取算法的新进展[J].国外医学(生物医学工程分册),2000,23(4):211-216. 被引量:12
  • 5Lecumberri P, Valencia M, Gomez M, et al. Simultaneous extraction and localization of dipolar independent components in evoked potentials [ A ]. In: Proceedings of the 25th Annual International Conference of the IEEE EMBS[ C ]. Cancun, Mexico : IEEE-EMBS,2003. 2109 - 2112.
  • 6Huang Norden E, Shen Zheng, Long SR, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis [ A]. In: Proceedings of the Royal Society [C]. London: The Royal Society, 1998, 454: 903-995.
  • 7Rilling G, Flandrin P, Goncalves P. On Empirical Mode Decomposition and its Algorithms [ A]. In: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing [ C ]. 2003. NSIP-03, Grado (I).
  • 8Barres AK, Vigario R, Jousmaki V, et al. Extraction of Event- Related Signals from Multichannel Bieeleetrical Measurements [J]. IEEE Transaction on Biomedical Engineering, 2000, 47(5) : 583 - 588.
  • 9张旭秀,邱天爽.基于源信号统计独立性的ICA方法的不确定性研究[J].系统工程与电子技术,2004,26(4):556-559. 被引量:6
  • 10Yu Danjiang, Ren Weixin. EMD-based stochastic subspace identification of structures from operational vibration measurements [J]. Engineering Structures, 2005, 27: 1741- 1751.

二级参考文献13

  • 1李鲁平,吴延军,程敬之,杨福生.诱发脑电动态提取方法研究[J].国外医学(生物医学工程分册),1995,18(4):195-201. 被引量:8
  • 2Hyvarinen A,Pajunen P. Nonlinear Independent Component Analysis: Existence and Uniqueness Results[J]. Neural Networks,1999,12:429-439.
  • 3Lee T,Sejnowski T J. Independent Component Analysis for Sub-Gaussian and Super-Gaussian Mixtures[C]. In 4th Joint Symposium on Neural Computation,Institute for Neural Computation,1997,7:132-139.
  • 4Bell A J,Sejnowski T J. An Information-Maximization Approach to Blind Separation and Blind Deconvolution[J]. Neural Computation,1995,7(6):1129-1159.
  • 5Lee T,Girolami M,Bell A J, et al. A Unifying Information Theoretic Framework for Independent Component Analysis[J]. Computers and Mathematics with Applications,2000,39:1-21.
  • 6Cardoso J F. Informax and Maximum Likelihood for Blind Source Separation[J]. IEEE Signal Processing Letters,1997,4:112-114.
  • 7Hyvarinen A. Independent Component Analysis in the Presence of Gaussian Noise by Maximizing Joint Likelihood[J]. Neurocomputing,1998,22:49-67.
  • 8Hyvariene A,Juha Karhunen,Erkki Oja. Independent Component Analysis[M]. New York:John Wiley & Sons Inc.,2001.
  • 9Comon P. Independent Component Analysis: A New Concept[J]. Signal Processing,1994,34:287-314.
  • 10Hyvarinen A,Oja E. Independent Component Analysis: Algorithms and Applications[J]. Neural Networks,2000,13:411-430.

共引文献62

同被引文献29

  • 1夏璇.二个矩阵同时对角化[J].南昌航空大学学报(自然科学版),2003,19(3):26-32. 被引量:5
  • 2潘映辅.临床诱发电位学(第2版)[M].北京:人民卫生出版社,2000.
  • 3Stefanos DG,Perttu OR,Mika PT,et al.Single-trial dynamical estimation of event-related potentials:A kalman filter-based approach[J].IEEE Transactions on Biomedical Engineering,2005,52(8):1397-1406.
  • 4Qiu Wei,Kenneth SM,Francis HY,et al.Adaptive filtering of evoked potentials with radial basis function neutral network prefiher[J].IEEE Transactions on Biomedical Engineering,2002,49 (3):225-231.
  • 5Wang Zhisong,Alexander M,David A,et al.Single-trial evoked potential estimation using wavelets[J].Computers in Biology and Medicine,2007,37 (4):463-473.
  • 6Quirogn R,Garcia H.Single-trial event-related potentials with wavelet denoising[J].Clin Neurophysiol,2003,114:376-390.
  • 7Aapo H,Erkki O.Independent component analysis:algorithms and applications[J].Neural Networks,2000,13 (4-5):411-430.
  • 8Kumaresan R,Tufts DW.Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise[J].IEEE Transaction on Acoustics,Speech and Signal Processing,1982,30(6):833-840.
  • 9Overschee PV,Moor BD.Subspace Identification for Linear Systems[M].Boston:Kluwer Academic Publishers,1996.
  • 10Ephraim Y,Trees HLV.A signal subspaee approach for speech enhancement[J].IEEE Transactions on Speech and Audio Processing,1995,3 (4):251-266.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部