期刊文献+

西伯利亚蓼谷胱甘肽转移酶和半胱氨酸合成酶基因在酿酒酵母中的共表达 被引量:2

Co-expression of Polygonum sibiricum Glutathione Transferase and Cysteine Synthase Genes in Saccharomyces cerevisiae
下载PDF
导出
摘要 谷胱甘肽转移酶和半胱氨酸合成酶在清除活性氧(reactive oxygen species,ROS)中起重要作用。采用0.36mol.L-1NaHCO3对西伯利亚蓼(Polygonum sibiricum)进行胁迫处理,荧光定量PCR分析表明这2个基因的表达受盐胁迫强烈诱导。为了分析2个基因是否具有抗盐能力以及其相互协同能力,从cDNA文库中获得谷胱甘肽转移酶(GST)和半胱氨酸合成酶(CS)2个基因,分别将GST、CS和GST+CS转入酿酒酵母(Saccharomyces cerevisiae)中,并分别命名转基因酵母为ty-gst、ty-cs和ty-gc。在1mol.L-1Na2CO3和5mol.L-1NaCl胁迫处理下,转基因酵母(ty-gst、ty-cs和ty-gc)的耐盐能力均明显高于野生型酵母(wy),而三者之间并无显著差别。在0.4mol.L-1NaCl胁迫处理下,转基因酵母(ty-gst、ty-cs和ty-gc)的抗氧化酶类相关基因SOD1、SOD2、GPX1和GPX3的表达量均低于野生型酵母(对照)(wy),而CTA1表达量均高于野生型酵母(对照)(wy)。转基因酵母ty-cs在0.4mol.L-1NaCl胁迫处理前后其超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)的活性均表现为最高。 Glutathione transferase (GST) and cysteine synthase (CS) play an important role in plant elimination of active oxygen (reactive oxygen species, ROS). RT-PCR analysis of GSTand CS in Polygonum sibiricum Laxm. showed remarkable change in expression induced by3% NaHCO3stress. We transformed GST, CS and the GST+CS combination into yeast cells ( Saccharomyces cerevisiae), designated transgenic yeast ( ty) ty-gst, ty-cs and ty-gc. The survival rate of ty-gst, ty-cs and ty-gc was higher than that of wild-type yeast (wy) under 1 mol·L^-1 Na2CO3 and 5 mol·L^-1 NaCl stress, with essentially no difference in rate between the three tys. With 0.4 mol·L^-1 NaCI, the activity of superoxide dismutase 1 (SOD1), SOD2, glutathione peroxidase 1 (GPX1) and GPX3 were lower and that of catalase 1 (CTA1) higher in tythan in wy. However, the activity of the ty-cs SOD, CAT and GPX showed the highest with 0.4 mol·L^-1 NaCl stress.
出处 《植物学通报》 CAS CSCD 北大核心 2008年第6期687-694,共8页 Chinese Bulletin of Botany
基金 黑龙江省科技重点攻关项目(No.GB06B303) 黑龙江省国际合作项目(No.WB07N02)
关键词 半胱氨酸合成酶 谷胱甘肽硫转移酶 活性氧 酿酒酵母 盐胁迫 cysteine synthase, glutathione transferase, reactive oxygen species, Saccharomyces cerevisiae, salt stress
  • 相关文献

参考文献18

  • 1王玉成,薄海侠,杨传平.胡杨、柽柳总RNA提取方法的建立[J].东北林业大学学报,2003,31(5):99-100. 被引量:62
  • 2Ahmad I, Hamid T, Fatima M, Chand HS, Jain SK, Athar M, Raisuddin S (2000). Induction of hepatic antioxidants in freshwater catfish (Channa punctatus Bloch) is a biomerker of paper mill effluent exposure. Biochim Biophys Acta 1523, 37- 48.
  • 3Avery AM, Willetts SA, Avery SV (2004). Genetic dissection of the phospholipid hydroperoxidase activity of yeast GPX3 reveals its functional importance. J Biol Chem 279, 46652- 46658.
  • 4Barroso C, Romero LC, Cejudo FJ, Vega JM, Gotor C (1999). Salt-specific regulation of the cytosolic O-acetylserine (thiol) lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol Bio140. 729-736.
  • 5Basu U, Southron JL, Stephens JL, Taylor GJ (2004). Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminium resistance in Saccharomyces cerevisiae. Mol Genet Genomics 271, 627-637.
  • 6Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
  • 7Cozatl DM, Tavera HL, Navarro AH, Sanchez RM (2005). Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29, 653-671.
  • 8Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB (2002). A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation. Cell 111,471-481.
  • 9Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK,Kastaniotis AJ, Gurvitz A (2003). The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27. 35-64.
  • 10Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007). Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. plants under salinity stress. Turk J Bot 31,245-251.

二级参考文献5

  • 1奥斯伯F 布伦斯RE 等.精编分子生物学指南[M].北京:科学出版社,1998..
  • 2萨姆布鲁克 费里奇 等.分子克隆[M].北京:科学出版社,1992.16-34.
  • 3Schneiderbauer A, Sandermann H Jr, Ernst D. Isolation of functional RNA from plant tissues rich in phenolic compounds. Anal Biochem,1991,197:91 -95.
  • 4Lewinsohu E, Steele C L, Croteau R. Simple isolation of functional RNA from woody stems of gymnosperms. Plant Mol Biol Rep, 1994,12:20 - 25.
  • 5Su X, Gibor A. A method for RNA isolation from marine macro -algae. Anal Biochem, 1988,174:650 - 657.

共引文献61

同被引文献26

  • 1Paul J Thornalley. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J, 1990,269: 1-11.
  • 2Singla-Pareek S L, Reddy M K, Sopory S K. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA,2003,100 : 14672-14677.
  • 3Veena Reddy V S, Sopory S K. Glyoxalase 1 from Brassicajuncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J, 1999,17: 385-395.
  • 4Singla-Pareek S L, Yadav S K, Pareek A, et al. Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol, 2006,140:613- 623.
  • 5Suchandra Deb Roy , Mukesh Saxena. Generation of marker free salt tolerant transgenic plants of Arabidopsis thaliana using the gly 1 gene and cre gene under inducible promoters. Plant Cell Tiss Organ Cult ,200g, 95 : 1-11.
  • 6Sneh L Singla-Pareek. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase H. Transgenic Res, 2007, DOI 10. 1007/s11248 -007 -9082 -9082.
  • 7Yadav S K, Singla-Pareek S L. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun , 2005,337:61-67.
  • 8Yadav S K, Singla-Pareek S L, Reddy M K, et al. Methylglyoxal detoxification by glyoxalase system: A survival strategy during environmental stresses. Physiol Mol Biol Plants ,2005,11:1-11.
  • 9Yadav S K, Singla-Pareek S L, Reddy M K,et al. Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett ,2005,579:6265-6271.
  • 10金承涛.Al^3+高温对酿酒酵母的胁迫作用及其耐性机制研究.浙江大学生命科学学院,2005.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部