摘要
在MATLAB环境下,针对二级倒立摆系统稳定控制问题,引入新的智能控制策略,该种方法采用BP算法与最小二乘(LSE)算法结合的混合算法对Takagi-Sugeno模糊模型中的前件及后件参数进行优化修正,在已获得的客观输入、输出样本集的基础上,提出一种基于自适应神经网络的模糊推理系统ANFIS来对倒立摆系统进行"倒立"控制。实时控制结果表明,所提出的控制方法是可行而且有效的。
Under the environment of MATLAB, aiming at equilibrium control problem of double-link inverted pendulum system, a new intelligent control strategy is introduced. A mixed arithmetic of BP and LSE arithmetic are used, in order to optimize and amend the front-part and later-part parameter of Takagi-Sugeno fuzzy model. Based on the objective input-output sample set acquired, a sort of self-adaptive neuro-fuzzy inference system is put forward for inverted control of inverted pendulum. The result of real- time equilibrium control shows this control method is available and effective.
出处
《北京机械工业学院学报》
2008年第4期24-28,共5页
Journal of Beijing Institute of Machinery
基金
北京市教育委员会科技计划面上项目(KM200611232012)
关键词
二级倒立摆
模糊神经网络
自适应神经模糊推理系统
实时稳定控制
double-link inverted pendulum
fuzzy-neural-network
self-adaptive neuro-fuzzy inference system
real-time equilibrium control