期刊文献+

Microstructure and Mechanical Properties of In-situ Synthesized Al2O3/TiAl Composites 被引量:12

Microstructure and Mechanical Properties of In-situ Synthesized Al2O3/TiAl Composites
原文传递
导出
摘要 Al2O3 particle-reinforced TiAl composites are successfully reaction-synthesized from the powder mixture of Ti, Al, TiO2, and Nb2O5, using the hot pressing reaction synthesis technique. The microstructure and mechanical properties of the as-sintered products are investigated. It is found that in the as-sintered products consisting of γ-TiAl, α2-Ti3Al, Al2O3, and NbAl3 phases, the fine Al2O3 particles tend to disperse on the grain boundaries. With the Nb2O5 content increasing, the grains are remarkably refined and the Al2O3 particles are dispersing more uniformly in the TiAl matrix, forming a partial lamellar structure containing α and lamellar phases. The hardness of the in-situ composites increases gradually, and the bending strength and the fracture toughness of the as-sintered products reach the maximum value of 398.5 MPa and 6.99 MPa·m^1/2, respectively, as the Nb2O5 content increases to 6 wt%. Al2O3 particle-reinforced TiAl composites are successfully reaction-synthesized from the powder mixture of Ti, Al, TiO2, and Nb2O5, using the hot pressing reaction synthesis technique. The microstructure and mechanical properties of the as-sintered products are investigated. It is found that in the as-sintered products consisting of γ-TiAl, α2-Ti3Al, Al2O3, and NbAl3 phases, the fine Al2O3 particles tend to disperse on the grain boundaries. With the Nb2O5 content increasing, the grains are remarkably refined and the Al2O3 particles are dispersing more uniformly in the TiAl matrix, forming a partial lamellar structure containing α and lamellar phases. The hardness of the in-situ composites increases gradually, and the bending strength and the fracture toughness of the as-sintered products reach the maximum value of 398.5 MPa and 6.99 MPa·m^1/2, respectively, as the Nb2O5 content increases to 6 wt%.
作者 Ai Taotao
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第6期559-564,共6页 中国航空学报(英文版)
关键词 TIAL COMPOSITES microstructure mechanical properties hot pressing TiAl composites microstructure mechanical properties hot pressing
  • 相关文献

参考文献4

二级参考文献51

共引文献28

同被引文献213

引证文献12

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部