摘要
提出一种新的粒子群协同优化算法(PSCO)。应用该粒子群协同优化算法实现异步电机静态参数辨识。在有噪声的情况下,该算法明显改善了标准粒子群算法和基于遗传的粒子群算法,在解决异步电机静态参数辨识问题时,存在识别参数准确性不高、辨识成功率低的问题。
This paper introduced a new improved particle swarm collaborative optimization (PSCO) algorithm and applied this method to static parameter identification of induction motor. Compared with the standard particle swarm optimization algorithm and the particle swarm optimization based on genetic algorithm, It had obvious advantage. Emulation experiments demonstrated that the PSCO algorithm remarkably improved the accuracy of identification parameters and increased the success rate of identification results when the noise existed.
出处
《电机技术》
2008年第6期11-14,共4页
Electrical Machinery Technology
关键词
粒子群算法
异步电机
参数辨识
Particle swarm optimization (PSO) Induction motor Parameter identification