期刊文献+

浅议一阶逻辑的发展与集合论公理化的关系

On the Relationship between the Development of First-order Logic and the Axiomatization of Set Theory
原文传递
导出
摘要 众所周知,一阶逻辑与公理集合论是数理逻辑的两个组成部分,其中,一阶逻辑是数理逻辑的基础部分。但在数理逻辑刚刚出现的时候,逻辑不是一阶的,集合论也经历了由康托尔素朴集合论到公理集合论的发展。在数理逻辑发展的历史中,一阶逻辑的出现及其主导地位的确立与集合论的公理化,二者之间存在着密切的联系。 It is well known that first-order logic and axiom set theory are two part of the whole mathematical logic. However at the beginning of mathematical logic, logics were not first-order, and set theory has gone through from Kantor's naive set theory to axiom set theory. In the history of the development of mathematical logic, there has been close relationship between the emergence and dominance of first-order logic and the axiomatization of set theory.
作者 王辉
出处 《自然辩证法研究》 CSSCI 北大核心 2008年第12期27-30,共4页 Studies in Dialectics of Nature
关键词 数理逻辑 一阶逻辑 公理集合论 逻辑史 mathematical logic first-order logic axiom set theory history of logic
  • 相关文献

参考文献10

  • 1Matti Eklund. On How Logic Became First-order[J]. Nordic Journal of Philosophical Logic, 1996,1(2) :147--167.
  • 2Jose Ferreiros. The Road to Modern Logic-An Interpretation[J]. The Bulletin of Symbolic Logic, 2001,7(4) :441-- 484.
  • 3Jens Erik Frenstad. Thoralf Albert Skolem (1887--1963) - A Biographical Sketch[J]. Nordic Journal of Philosophical Logic, 1996,1(2): 99-106.
  • 4Gregory H Moore. The Emergence of First-order Logic [M]//William Aspray, Philip Kitcher (eds.). History and Philosophy of Modern Mathematics. University of Minnesota Press, Minneapolis: 1988 : 95-- 135.
  • 5Gregory H Moore. Beyond First-order Logic: The Historical Interplay Between Mathematical Logic and Axiomatic Set Theory[J]. History and Philosophy of Logic, 1980(1): 95 --137.
  • 6Thoralf Skolem. Some Remarks on Axiomatised Set Theory [J]. van Heijenoort ,1967: 290--301.
  • 7Thoralf Skolem(1928). On Mathematical Logic[J]. van Heijenoort, 1967 : 508-- 524.
  • 8Jean van Heijenoort (ed.). From Frege to Godel: A Source Book in Mathematical Logic: 1879--1931[M]. Cambridge, Mass: Harvard University Press, 1967.
  • 9Dirk Van Dalen. Heinz-Dieter Ebbinghaus. Zermelo and the Skolem Paradox[J]. The Bulletin of Symbolic Logic, 2000, 1(2): 145--161.
  • 10张家龙.数理逻辑发展史[M].社会科学文献出版社,1993.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部