期刊文献+

集成学习的多分类器动态组合方法 被引量:8

Dynamic Combinatorial Method of Multiple Classifiers on Ensemble Learning
下载PDF
导出
摘要 为了提高数据的分类性能,提出一种集成学习的多分类器动态组合方法(DEA)。该方法在多个UCI标准数据集上进行测试,并与文中使用的基于Adaboost算法训练出的各个成员分类器的分类效果进行比较,证明了DEA的有效性。 In order to improve the classification performance of dataset, a dynamic combinatorial method of multiple classifiers on ensemble learning DEA is proposed in the paper. DEA is tested on the UCI benchmark data sets, and is compared with several member classifiers trained based on the algorithm of Adaboost. In this way, the utility of DEA can be proved.
作者 陈冰 张化祥
出处 《计算机工程》 CAS CSCD 北大核心 2008年第24期218-220,共3页 Computer Engineering
基金 山东省科技攻关计划基金资助项目(2005GG4210002) 山东省青年科学家科研奖励基金资助项目(2006BS01020) 山东省教育厅科技计划基金资助项目(J07YJ04) 山东省自然科学基金资助项目(Y2007G16)
关键词 多分类器 聚类 动态分类器组合 ADABOOST算法 multiple classifiers clustering dynamic classifier ensemble Adaboost algorithm
  • 相关文献

参考文献7

二级参考文献19

  • 1Tseng L Y,Pattern Recognition,2000年,33卷,7期,1251页
  • 2Xu L,IEEE Trans Systems,Man and Cybernetics,1992年,22卷,3期,418页
  • 3Nancy I de,Jean Veronis.Introduction to the special issue on word sense disambiguation:The state of the Art.Computational Linguistics,1998,24(1):1~40
  • 4Y.Freund,R.E.Schapire.Experiments with a new boosting algorithm.In:Proc.13th Int'l Conf.Machine Learning.San Francisco:Morgan Kaufmam,1996.148~156
  • 5S.Abney,R.E.Schapire,Y.Singer.Boosting applied to tagging and PP-attachment.In:Proc.Joint SIGDAT Conf.Empirical Methods in Natural Language Processing and Very Large Corpora,1999.38 ~ 45 http://citeseer.ist.psu.edu/context/930001/588691
  • 6R.E.Schapire,Y.Singer.BoostTexter:A boosting-based system for text categorization.Machine Learning,2000,39(2):135 ~ 168
  • 7Gerard Escudero Llu s Marquez,German Rigau.Boosting applied to word sense disambiguation.The 1 1th European Conf.Machine Learning (ECML 2000),Barcelona,Spain,2000
  • 8Seong-Bae Park,Byoung-Tak Zhang,Yung Taek Kim.Word sense disambiguation by learning decision trees from unlabeled data.Applied Intelligence,2003,19(1-2):27~ 38
  • 9Blake C L,Merz C J.UCI repository of machine learning databases[EB/OL].http://www.ics.uci.edu/ ~mlearn/ MLRepository.html,Dept.of Information and CS,California,Irvine CA,1998.
  • 10Koppel M,Engelson S P.Integrating multiple classifiers by finding their areas of expertise[C]∥ AAA-96 Workshop on integrating multiple learning models,1996:53-58.

共引文献33

同被引文献54

  • 1李国正,杨杰,孔安生,陈念贻.基于聚类算法的选择性神经网络集成[J].复旦学报(自然科学版),2004,43(5):689-691. 被引量:15
  • 2许人灿,姜卫东,陈曾平.目标一维距离像特征提取方法研究[J].系统工程与电子技术,2005,27(7):1173-1174. 被引量:9
  • 3赵琳,罗汉,刘京.加权马氏距离判别分析方法及其权值确定——旅游信息服务系统的智能推荐[J].经济数学,2007,24(2):185-188. 被引量:16
  • 4Gunter S, Bunke H. Feature Selection Algorithms for the Generation of Multiple Classifier Systems and Their Application to Handwritten Word Recognition[J]. Pattern Recognition Letter, 2004 25(11): 1323-1336.
  • 5Zhou Zhihua, Wu Jianxin, Tang Wei. Ensembling Neural Networks: Many Could Be Better Than All[J]. Artificial Intelligence, 2002, 137(1/2): 239-263.
  • 6Hu Qinghua, Yu Daren, Xie Zongxia, et al. EROS: Ensemble Rough Subspaces[J]. Pattern Recognition, 2007, 40(12): 3728-3739.
  • 7Group of Logic. RSES 2.2[EB/OL]. [2009-06-08]. http://logic. mimuw.edu.pl/-rses.
  • 8Giacinto G, Roli F. Dynamic Classifier Selection Based on Multiple Classifier Behaviour[J]. Pattern Recognition, 2001, 34(9): 1879- 1881.
  • 9Merz C J, Murphy P M.. UCI Repository of Machine Learning Databases[EB/OL]. [2009-06-08]. http://www.ics.uci.edu/-mlearn/ MLRepository.
  • 10Witten I, Frank E. Weka 3: Data Mining Software in Java[EB/OL]. [2009-06-08]. http://www.cs.waikato.ac.nz/-ml.

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部