期刊文献+

两种新的有效的非线性系统最小二乘辨识算法 被引量:3

TWO NEW EFFECTIVE BIDIAGONALIZATION LEAST SQUARES ALGORITHMS FOR NONLINEAR SYSTEM IDENTIFICATION
下载PDF
导出
摘要 提出了两种新的有效的最小二乘算法——改进的双对角化最小二乘算法MBLS-Ⅰ与MBLS-Ⅱ.在存在舍入误差的条件下,证明了算法的收敛性.该算法具有几乎不受舍人误差影响的优点,优于一般常用的最小二乘算法,包括数值性态极佳的SVD算法.同时,基于该算法及SVD算法,构造出了一种新的NARMAX模型结构与参数辨识的一体化算法.仿真结果证明了此新算法的优越性. Two new effective least squares algorithms——the modified bidiagonalization least squares algorithms(MBLS Ⅰ and MBLS Ⅱ) are proposed in this paper. Under the condition that round off errors exist, a convergence proof is given. They are superior to the common used least squares algorithms such as the SVD method for round off errors have little influence to their convergence. Furthermore, based on the two algorithms and the SVD method, a new integrated algorithm for the NARMAX model’s structure and parameters’ identification is also proposed here. The simulation results indicate their superiority.
出处 《自动化学报》 EI CSCD 北大核心 1998年第1期95-101,共7页 Acta Automatica Sinica
关键词 非线性系统 系统辨识 最小二乘辨识 算法 Nonlinear system, system identification, bidiagonalization least squares.
  • 相关文献

参考文献3

  • 1Chen S,Int J Control,1989年,49卷,1013页
  • 2Chen S,Int J Control,1989年,50卷,1873页
  • 3Chen S,Int J Control,1988年,47卷,309页

同被引文献16

  • 1邢修三.Physical entropy, information entropy and their evolution equations[J].Science China Mathematics,2001,44(10):1331-1339. 被引量:11
  • 2Leontaritis I J,Billings S A.Input-output parametric models for non-linear systems.Part Ⅰ:Deterministic non-linear systems[J].International Journal of Control,1985,41 (2):1991-2008.
  • 3Chen S,Billings S A.Representations of non-linear systems:The NARMAX model[J].International Journal of Control,1989,49(3):1013-1032.
  • 4South M,Bancroft C,Willis M J,et al.System identification via genetic programming[A].Proceedings of the 1996 UKACC International Conference on Control[C].Stevenage,UK:IEE,1996.912-917.
  • 5Rodriguez-Vazquez K,Fleming P J.Multi-objective genetic programming for nonlinear system identification[J].Electronics Letters,1998,34(9):930-931.
  • 6Rodriguez-Vazquez K,Fonseca C M,Fleming P J.Identifying the structure of nonLinear dynamic systems using multiobjective genetic programming[J].IEEE Transactions on Systems,Man,and Cybernetics,Part A:Systems and Humans,2004,34 (4):531-545.
  • 7Beligiannis G N,Skarlas L V,Likothanassis S D,et al.Nonlinear model structure identification of complex biomedical data using a genetic-programming-based technique[J].IEEE Transactions on Instrumentation and Measurement,2005,54 (6):2184-2190.
  • 8Ferreira C.Gene expression programming:A new adaptive algorithm for solving problems[J].Complex Systems,2001,13(2):87-129.
  • 9Ferreira C.Function finding and the creation of numerical constants in gene expression programming[A].Advances in Soft Computing:Engineering Design and Manufacturing[C].London,UK:Springer-Verlng,2003.257-265.
  • 10陈建勤,席裕庚,张钟俊.用模糊模型在线辨识非线性系统[J].自动化学报,1998,24(1):90-94. 被引量:50

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部