期刊文献+

线性高振荡微分方程在两组不同基下的近似解

Approximating Solution to Highly-oscillatory Linear Differential Equation
下载PDF
导出
摘要 分别以Bernstain多项式以及准均匀B样条为基函数,来逼近线性高振荡常微分方程。通过求解基函数对应的系数方程组,得到方程的近似解。通过数值实验表明用准均匀B样条函数的逼近效果要比Bernstain多项式要好。 This paper deals with approximating solutions to highly- oscillatory linear differential equations in Bernstain polynomial basis and quasi - uniform B- spline separately. We solve the equations of coefficients to get the numerical solution and by numerical experimentation we can see that the solutions in quasi - uniform B - spline basis is better than those in Bernstain polynomial basis.
出处 《数学理论与应用》 2008年第4期49-53,共5页 Mathematical Theory and Applications
关键词 Bemstain多项式 准均匀B样条 线性高振荡常微分方程 Bemstain polynomial Quasi - uniform B- Spline Highly- oscillatory linear differential equatiion.
  • 相关文献

参考文献2

二级参考文献5

  • 1Iserles A.On the Global Error of Discretization Methods for Highly-Oscillatory Ordinary Differential Equations[J].BIT,2001,42:561-599.
  • 2Iserles A,Munthe-Kaas H,Nrsett S P.Lie-Group Methods[J].Acta Numerica,2000,9:215-365.
  • 3Iserles A.Think Globally,Act Locally:Solving HighlyOscillatory Ordinary Differential Equations[J].Applied Num.Anal.,2002,43:145-160.
  • 4Hinch E J.Perturbation Methods[M].Cambridge:Cambridge University Press,1991.
  • 5姜健飞,胡良剑,唐俭.数值分析及MATLAB实验[M].北京:科学出版社,2004.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部