摘要
在实际应用中,以快速Fourier变换为基础的偏移方法,将本来是实数的地震道转化为复数参加运算,导致了计算机内存的增加。本文把只有纯实数运算的Hartley变换引入到基于Fourier变换的偏移算法,再利用三维真振幅偏移单程波方程,结合Fourier变换与Hartley变换的内在关系,经过数学推理,具体导出了裂步Hartley变换真振幅偏移算子。与一般裂步Fourier法相比,裂步Hartley变换真振幅偏移算法既提高了计算效率又对球面扩散问题进行了振幅补偿。
In real application, the migration methods based on Fast Fourier transform change real seismic trace into complex to operate results the increase of computer memory. In this paper, we introduce the Hartley transform with the pure real cal- culation into migration algorthm. The Split Step Hartley transform migration operator with true amplitude is derived by math- ematical inference based on the inherent relations between Fourier transform and Hartley transform and a one- way wave equation with true amplitude created,and steps are given. Compared with the common Split Fourier, The Split Step Hartley tnmsform migration operator with true amplitude beth enhances with computing efficiency and proceeds the amplitude compensation about spherical proliferation.
出处
《数学理论与应用》
2008年第4期123-127,共5页
Mathematical Theory and Applications
基金
国家高技术发展计算(863计划)项目(2002AA615010)