期刊文献+

随机系数矩阵卡尔曼滤波 被引量:3

Random parameter matrices Kalman filtering
原文传递
导出
摘要 作者考虑了状态转移矩阵和量测矩阵是随机阵的线性离散时间动态系统的状态的线性最小方差递推估计问题,即随机系数矩阵卡尔曼滤波,说明了该系统可化为过程噪声和量测噪声均依赖于状态,而转移矩阵和量测矩阵是非随机阵的线性动态系统,从而证明了新系统的状态的最小方差估计问题仍有卡尔曼滤波形式. The Linear Minimum Variance recursive state estimation is studied in the linear discrete time dynamic system with random state transition and observation matrices, i. e., random parameter matrices Kalman filtering. It is shown that such system can be reduced to a linear dynamic system with deterministic parameter matrices and state-depending process and measurement noises, and the Linear Minimum Variance recursive state estimation of the new system is still in the form of Kalman filtering.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期1309-1312,共4页 Journal of Sichuan University(Natural Science Edition)
基金 "863"项目(2006AA12A104)
关键词 随机系数矩阵 随机卡尔曼滤波 线性最小方差递推估计 random parameter matrices, random Kalman filtering, linear mininum variance recursive state stimation
  • 相关文献

参考文献4

  • 1De Koning W L. Optimal estimation of linear discretetime systems with stochastic parameters[J ]. Automatica, 1984, 20. 113.
  • 2Goodwin G C, Payne R. Dynamic system identification: experimental design and data analysis[M]. New York: Academic Press, 1977.
  • 3Ljung L. System identification: theory for the user [M]. New Jersy: Prentice-Hall, 1987.
  • 4Zhu Y M. Multisensor decision and estimation fusion [ M ]. Boston/DordrechtA.ondon Dordrecht: Kluwer Academic Publishers, 2003.

同被引文献17

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部