期刊文献+

一种新的前馈神经网络删剪算法 被引量:2

A new feedforward neural network pruning algorithm
原文传递
导出
摘要 前馈神经网络中隐层神经元的个数与它的学习和泛化能力密切相关.通过广义逆矩阵算法解决最小二乘问题改进神经网络自构行学习算法,得到一种新的前馈神经网络删剪算法.将新算法用于已经训练好的大型网络,能删剪"冗余"的隐层神经元,得到一个最精简的神经网络.此精简的神经网络不需要重新训练仍能保持原有的性能,并且泛化能力很好.仿真实例说明此算法的有效性和可行性. The number of neurons in hidden layers of feedforward neural network is very relative to its learning ability and generalization ability. A new feedforward neural network pruning algorithm is obtained by improving the Neural Network Self-configuring Learning(NNSCL) algorithm through using Generalized Inverse Matrix(GIM) algorithm to solve the least-squares problem. For a large trained neural network, the new algo- rithm can remove redundant neurons in its hidden layers to obtain the minimum neural network which pre- serves its original performance without retraining after pruning and has good generalization ability. The simu- lation results demonstrate the effectiveness and the feasibility of the algorithm.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期1352-1356,共5页 Journal of Sichuan University(Natural Science Edition)
关键词 前馈神经网络 神经网络自构行学习(NNSCL)算法 广义逆矩阵(GIM)算法 feedforward neural network, neural network self-configuring learning(NNSCL) algorithm, generalized inverse matrix(GIM) algorithm
  • 相关文献

参考文献11

二级参考文献28

  • 1雷鸣,吴雅,杨叔子.非线性时间序列建模与预测的神经网络法[J].华中理工大学学报,1993,21(1):47-52. 被引量:20
  • 2边肇祺.模式识别[M].清华大学出版社,1999..
  • 3杨行峻 郑君里.人工神经网络与盲信号处理[M].北京:清华大学出版社,2002..
  • 4Liang S Y,Trans of the ASME J Eng Ind,1989年,111卷,3期,199页
  • 5焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 6Thodoridis S, Koutroumbas K. Pattern Recognition[M]. San Diego:Academic Press, 1999.
  • 7Zahid N, Abouelala O, Limouri M A. Essaid, Unsupervised fuzzy clustering[J]. Pattern Recognition Letters, 1999,20:123 - 129.
  • 8Eschrich S, Ke J, Hall L O, et al. Fast fuzzy clustering of infrared images[ EB/OL]. 20th NAFIPS International Conference, 2001.
  • 9Xie X L, Beni G. A validity measure for fuzzy clustering[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,1991, 13(8) :841 - 847.
  • 10Gustafson D E, Kessel W C. Fuzzy clustering with a fuzzy covariance matrix[J]. CA, 1979, 761 - 766.

共引文献10

同被引文献15

  • 1邹逢兴,张湘平,李汉军.电磁兼容技术[M].北京国防工业出版社,2005.
  • 2Phumin K, Nakka K E. Electromagnetic toplogy-based analysis of coupling through small aperture on cables of communication systems [J]. Taylor&Francis group, 2005 : 603.
  • 3钱照明,程肇基.电力电子系统电磁兼容设计基础及干扰抑制技术[M].2版.浙江大学出版社,2002:73.
  • 4大卫A韦斯顿(加拿大).电器兼容原理与应用[M].北京:机械工业出版社,2006.
  • 5Phumin K, Justin R, Wilson A. Generic topological simulation scheme for studying aperture electromag- netic field interactions and cable coupling[J]. Appl Phys, 2007(102): 02902.
  • 6Steven L D, Pao H Y. A new solution for the prob- lem of plane wave diffraction by a 2-D aperture in a ground plane[J].IEEE Transactions on Antennas and Propagation, 2005, 53(7):299.
  • 7Cao X Y, Liang C H, Gao J. Analysis of aperture coupling of electromagnetic energy in cylindrical wall[J]. Antenas and Wireless Propagation Letters, 2004(3) : 4.
  • 8Fredric M H, Ivica K. Prineinples of neurocomput- ing for science and engineering[M]. Newyork: McGraw-Hill Companies, 2001,.
  • 9蔡义祥,陈文静,赵玥,许罗鹏.基于小波神经网络的复杂三维物体测量[J].四川大学学报(自然科学版),2010,47(4):763-767. 被引量:3
  • 10李玉鉴.前馈神经网络中隐层神经元数目的一种直接估计方法[J].计算机学报,1999,22(11):1204-1208. 被引量:20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部