摘要
从渗透各向异性非轴对称固结基本方程出发,通过引入Fourier级数展开,对时间t、坐标r的Laplace-Hankel变换,再对坐标z的Laplace变换,得到四元一次方程组,解此方程组,并进行Laplace逆变换,得到了单层渗透各向异性地基非轴对称固结问题的传递矩阵,然后利用传递矩阵法,结合层间连续性条件和边界条件,得到了多层渗透各向异性地基非轴对称固结问题在积分变换域内的解。最后应用Laplace-Hankel逆变换技术得到非轴对称固结问题在物理域内的理论解;并编制出相应的计算程序,进行数值计算和分析,以讨论渗透各向异性对地基固结的影响。
Starting from the governing equations of asymmetric consolidation of soil with anisotropic permeability, together with the technique of Fourier expansions, Laplace-Hankel transform with respect to coordinate z, time t and coordinate r, respectively, a linear equations in four is obtained, after solving the equations, the transfer matrix for a single soil layer with anisotropic permeability is first acquired. Based on the continuity and the boundary conditions, the transfer matrix method is utilized to derive the solution for the multi-layered soils with anisotropic permeability in the transform domain. By the inversion of the Laplace-Hankel transform, the, solution for consolidation problems of multi-layered soils with anisotropic permeability in the physical domain is obtained. Numerical calculation and analysis are carried out by the computer program, and the effect of anisotropic permeability on the process of soil consolidation is also discussed.
出处
《工业建筑》
CSCD
北大核心
2008年第11期58-62,共5页
Industrial Construction
基金
国家自然科学基金资助项目(50578121)