期刊文献+

鉴别投影嵌入及其在人脸识别中的应用 被引量:2

Discriminant Projection Embedding with Its Application to Face Recognition
下载PDF
导出
摘要 该文提出了一种新的监督线性降维方法,称为鉴别投影嵌入(Discriminant Projection Embedding,DPE)。和常用的线性鉴别分析相比,鉴别投影嵌入可以更好地保留类内的局部几何位置信息和提取类间的鉴别结构信息。在人脸识别公用数据库上进行了一系列的实验,实验结果表明了该文方法的可行性和有效性。 A new supervised linear dimensionality reduction method called Discriminant Projection Embedding (DPE) is proposed. Compared with widely-used Linear Discriminant Analysis (LDA), DPE can preserve the within-class neighboring geometry and extract between-class relevant structures for classification more efficient. Experimental results on public face databases show the feasibility and efficiency of DPE.
作者 严严 章毓晋
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第12期2902-2905,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60573148)资助课题
关键词 人脸识别 监督线性降维方法 图像差值模型 鉴别投影嵌入 Face recognition Supervised linear dimensionality reduction Image difference model Discriminant projection embedding
  • 相关文献

参考文献14

  • 1Yan S C, Xu D, Zhang B, and Zhang H J. Graph embedding and extensions: A general framework for dimensionality reduction. [EEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
  • 2Moghaddam B. Principal manifolds and probabilistic subspace for visual recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(6): 780-788.
  • 3Zhao W, Chellappa R, Phillips P J, and Rosenfeld A. Face recognition: A literature survey. ACM Computing Surveys, 2003, 35(4): 399-459.
  • 4Zhao W, Chellappa R, and Krishnaswamy A. Discriminant analysis of principal components for face recognition. Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 1998: 336-341.
  • 5Belhumeur P N, Hepanha J P, and Kriegman D J. Eigenfaces vs Fisherfaces: recognition using class specific linear projection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 6Bressan M and Vitria J. Nonparametric discriminant analysis and nearest neighbor classification. Pattern Recognition Letters, 2003, 24(15): 2743-2749.
  • 7Chen H T, Chang H W, and Liu T L. Local discriminant embedding and its variants. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 846-853.
  • 8Chen L, Liao H, Ko M, Lin J, and Yu G. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition, 2000, 33(10): 1713-1726.
  • 9Yu H and Yang J. A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognition, 2001, 34(10): 2067-2070.
  • 10Wang X G and Tang X O. A unified framework for face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1222-1228.

同被引文献5

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部