期刊文献+

分数O-U过程下信用风险结构化模型

Structural Credit Risk Model Driven by Fractional O-U Process
下载PDF
导出
摘要 传统的信用风险结构化模型中用几何布朗运动来驱动,已被证明与实际存在较大差距。取而代之,用分数指数O-U过程来驱动资产价值可以更加接近实际,利用相关的随机分析理论得到了违约概率、企业债券与股票价值和信用价差的表达式。 Traditional structural credit risk model is driven by geometric Brown motion. It is proved that this model has a large difference between its theory and practice. The firm asset obeys fractional exponential O--U process, which will approach the practice more exactly in stead of geometric Brown motion. The explicit solutions of default probability, corporate bond,stock price and credit spread can be gotten by means of related stochastic analysis theory.
作者 王能华
出处 《安庆师范学院学报(自然科学版)》 2008年第4期13-16,共4页 Journal of Anqing Teachers College(Natural Science Edition)
基金 陕西省教育厅自然科学专项基金项目(05JK207)资助
关键词 分数指数O-U过程 违约概率 债券价值 信用价差 fractional exponential O--U process, default probability, corporate bond, credit spread
  • 相关文献

参考文献10

  • 1Merton R C. On the pricing of corporate debt:the risk structure o[ interest rates[J]. Journal of Finance, 1974,29(2) :449--470.
  • 2Black F,Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy,1973,81(3) :637--654.
  • 3Black F, Cox J C. Valuing Corporate Securities:Some Effects of Bond Indenture Provisions[J]. Journal of Finance, 1976,31 (2) :351-- 367.
  • 4Leland H. Corporate Debt Value,Bond Covenants,and Optimal Capital Structure[J]. Journal of Finance,1994,49(4):1 213--1 252.
  • 5Longstaff F A, Schwartz E S. A Simple Approach to Valuing Risky Fixed and Floating Rate Debt[J]. Journal of Finance, 1995,50(3) : 789--819.
  • 6Schnbucher P J. Credit Derivatives Pricing Models[M]. Wiley Finance,2003.
  • 7李慧玲.分数布朗运动下信用风险结构模型[J].甘肃联合大学学报(自然科学版),2007,21(5):23-26. 被引量:3
  • 8赵巍,何建敏.股票价格遵循分数Ornstein-Uhlenback过程的期权定价模型[J].中国管理科学,2007,15(3):1-5. 被引量:20
  • 9Bielecki T R,Rutkowski M. Credit Risk: Modeling, Valuation and Hedging[M]. Springer Finance, 2002.
  • 10闫海峰,刘三阳.股票价格遵循Ornstein-Uhlenback过程的期权定价[J].系统工程学报,2003,18(6):547-551. 被引量:37

二级参考文献24

  • 1刘韶跃,杨向群.分数布朗运动环境中欧式未定权益的定价[J].应用概率统计,2004,20(4):429-434. 被引量:50
  • 2陈秀花.信用风险定价模型综述[J].生产力研究,2006(3):276-278. 被引量:3
  • 3胡素华,张世英,张彤.金融工程中资产收益的连续时间模型评述[J].中国管理科学,2006,14(2):24-32. 被引量:10
  • 4[1]BLACK F,SCHOLFS M.The pricing of options and corporate libilities[J].Journal of Political Economy,1973,22:637-659.
  • 5[2]MERTON,ROBERT C.On pricing of corporate debt:the risk structure of interest rate[J].Journal of Finance,1974(6):449-470.
  • 6[3]LONGSTAFF F,SCHWARTZ E.A simple approach to valuing risky fixed and floating rate debt[J].Journal of finance,1995,58:789-821.
  • 7[4]LELAND H.Corporate debt value,bond covenants,and optimal capital structure[J].Journal of Finance,1994,49:1213-1252.
  • 8[8]KAY GIESECKE.Credit risk modeling and valuation:an introdution[D].Cornell University,2002:24,004.
  • 9Osborne M.F.M..Brownian Motion in the stock market[J].Operations Research,1959,7(2):145-173.
  • 10Ding Z.,Granger C.W.J.,Engle R.F..A long memory property of stock market returns and a new model[J].Journal of Empirical Finance,1993,1(1):83-106.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部