期刊文献+

基于神经网络和模糊逻辑的平台罗经故障检测 被引量:1

Stabilized Gyrocompass Failure Detection Based-on Neural Networks and Fuzzy Logic
下载PDF
导出
摘要 在基于神经网络的平台罗经故障检测中,为了提高故障检测灵敏度,根据船载平台罗经故障检测的特点,提出了以模糊逻辑和指数加权平均处理估计误差的故障检测方法,并用实船航行数据仿真。该方法对未知输入等于扰不敏感而对故障敏感,且可根据故障的大小自动调节检测时间的长短。对不易检测的小故障,自动延长检测时间以利用更多的信息从而提高检测的正确率;对手较大的故障,自动缩短检测时间从而减少检测延时和累积误差。 In this article, a certain kind of method for stabilized gyrocompass failure detection was brought forward in order to improve the sensitivity of failure detection with high noises, which processes estimation errors with fuzzy logic and exponent-weighted average. And simulation was performed with real stabilized gyrocompass readings during a voyage. The failure detection method is sensitive to errors other than disturbance such as system' s unknown input. Furthermore, the method may adjust the length of detection time adaptively. When the error magnitude is small and intermixed with noises, the detection time is increased to make use of more information, which results in higher probability of correct detection. When the error magnitude is bigger, the detection time is decreased, so that the detecting delay is decreased and the error accumulation is reduced.
作者 徐力平
出处 《信号处理》 CSCD 北大核心 2008年第6期1044-1047,共4页 Journal of Signal Processing
基金 河南省自然科学基金资助项目(编号:0411012700)
关键词 神经网络 模糊逻辑 平台罗经 故障检测 stabilized gyrocompass failure detection neural networks fuzzy logic
  • 相关文献

参考文献6

  • 1Ren Da, Failure Detection of Dynamical Systems with the State Chi-Square Test [ J ]. Journal of Guidance, Control, and Dynamics. 1994,17 (2) : 271-277.
  • 2Napolitano M R, Neppach C, Casdorph V, et al. Neural- Network-Based scheme for sensor failure detection,identification, and accommodation [ J ]. Journal of Guidance, Control, and Dynamics, 1995,18 (6) : 1280 - 1286.
  • 3Napolitano M R, Windon D AII, Casanova J L. Kalman filters and neural-network schemes for sensor validation in flight control systems [ J ]. IEEE Transactions on Control Systems Technology, 1998,6 ( 5 ) : 596- 611.
  • 4徐力平,陈少熙.选择用于平台罗经故障检测的神经网络结构的方法[J].信号处理,2006,22(5):733-736. 被引量:2
  • 5Frank P M. Residual evaluation for fault diagnosis based on adaptive fuzzy thresholds [ A ]. lEE Colloquium on Qualitative and Quantitative Modeling for Fault Diagnosis [ C ]. London, UK. INSPEC Accession Number: 4974026,1995. 4/1-4/11.
  • 6Raza H, Ioannou P, Youssef H M. Surface failure detection for F/A-18 aircraft using neural networks and fuzzy logic [ A ]. IEEE World Congress on Computational Intelligence, IEEE International Conference on Neural Networks [ C ]. Orlando, FL, USA. INSPEC Accession Number: 4917461,1994,5:3363-3368.

二级参考文献7

  • 1Napolitano M R, Neppach C, Casdorph V, et al. Neural-Network-Based scheme for sensor failure detection, identification, and accommodation [ J ]. Journal of Guidance,Control, and Dynamics, 1995,18 (6) : 1280 - 1286.
  • 2Homik K,Stinchcombe M ,White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks [ J ]. Neural Networks, 1990,3(3) :551-560.
  • 3Elsken T. Even on finite test sets smaller nets may perform better[ J ]. Neural Networks, 1997,10 (2) :369 - 385.
  • 4Nguyen,D. Widrow, B. Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights ,Proceedings of the International Joint Conference on Neural Networks, 1990, ( IJCNN' 90), III-21-26.
  • 5Russell R. Pruning algorithms.-a survey[ J]. IEEE Transaction on Neural Networks, 1993,4 (5) :740 -747.
  • 6Syozo Y. Convergence suppression and divergence facilitation: minimum and joint use of hidden units by multiple outputs [J]. Neural Networks, 1997,10 (2) :353 - 367.
  • 7Anders U, Korn O. Model selection in neural networks [ J ].Neural Networks, 1999,12 (2) :309 - 323.

共引文献1

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部