期刊文献+

粒子群算法在工程优化设计中的应用 被引量:65

Application of Particle Swarm Optimization in the Engineering Optimization Design
下载PDF
导出
摘要 将粒子群算法与惩罚函数法相结合,建构一种离散粒子群算法,解决工程上非线性约束离散变量优化设计问题。为实现离散变量与连续变量的转化,构造了相应的扩张函数,提出惩罚因子的确定策略。通过容器设计算例验证,粒子群算法方法优于文献所列方法。应用粒子群算法、惩罚函数法及所提出的策略对波纹管工程实例进行优化设计,其单位重量下整体波纹管的补偿量比在用产品提高了79.96%,与理论解接近,进一步证明了离散粒子群算法及策略在处理工程非线性约束离散优化设计问题时的有效性,其为工程上类似优化设计提供借鉴。 A discrete partcle swarm optimization (PSO) is proposed to solve the problem of nonlinear constraints discrete optimization design in engineering, in which the penalty function is employed to transform discrete design variables to continuous design variables. An augment function is constructed and a new scheme of penalty parameter is proposed. The validity of proposed approach is examined by the famous benchmark-vessel design, the comparison results show that the proposed discrete particle swarm optimization is superior to the other algorithms from literatures and has better convergence performances. The proposed approach is applied further in the optimal design of bellows, the global optimums are obtained, the objective function value of maximum bellow s movement per weight unit is 79.9% improved than that of products in-service and it nears to theoretical solution. Therefore, the validity of the proposed approach is been examined, and the proposed discrete particle swarm optimization and scheme can be used to solve the problem of nonlinear constraints discrete optimization design in engineering.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第12期226-231,共6页 Journal of Mechanical Engineering
基金 国家高技术研究发展计划资助项目(863计划,2006042439)
关键词 工程优化设计 粒子群算法 离散设计变量 惩罚函数 惩罚因子 全局最优解 Engineering optimization design Particle swarm optimization Discrete design variables Penalty function Penalty factor Global optimum solution
  • 相关文献

参考文献14

  • 1KENNEDY J, EBERHART R. Particle swarm optimization[C]// IEEE Int'l Conference on Neural Networks. Piscataway, NJ: IEEE Service Center, 1995:1 942-1 948.
  • 2KENNEDY J, EBERHART R. Discrete binary version of the particle swarm algorithm[C]// Proceedings of the IEEE International Conference on Systems, Man. and Cybernetics. Orlando, FL, USA: IEEE, 1997, 5:4 104- 4 108.
  • 3JUAN J. Particle swarm optimization applications in power system engineering[D]. Puerto Rico: University of Puerto Rico, 2004.
  • 4TAYAL M. Particle swarm optimization for mechanical design[D]. Texas: University of Texas, 2003.
  • 5SHI Y, EBERHART R C. Parameter selection in particle swarm optimization [C]// Evolutionary Programming Ⅶ. Lecture Notes in Computer Science. Berlin, 1998, 1 447: 591-600.
  • 6孙艳丰,郑加齐,王德兴,武华.基于遗传算法的约束优化方法评述[J].北方交通大学学报,2000,24(6):14-19. 被引量:23
  • 7SHIN D K. A penalty approach for nonlinear optimization with discrete design variables[J]. Engineering Optimization, 1990, 16. 29-42.
  • 8SANDGREN E. Nonlinear and discrete programming in mechanical design [C]// Proceeding of the ASME Design Technology Conference. Kissimine, FL: ASME, 1990, 112: 223-229.
  • 9KANNAN B K, KRAMER S N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design[J]. Journal of Mechanical Design, Trans. ASME, 1994, 116: 318-320.
  • 10CARLOS A. Use of self-adaptive penalty approach for engineering optimization problems[J]. Computer in Industry, 2000, 41: 113-127.

二级参考文献9

共引文献65

同被引文献631

引证文献65

二级引证文献389

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部