期刊文献+

利用GFP/RFP双荧光指示载体鉴定特异性启动子功能 被引量:6

Functional Analysis of Specific Promoter Using Vecotors Harboring GFP/RFP Double Fluorescent Marker Genes
下载PDF
导出
摘要 在基因表达定位或启动子调控模式的研究中,多以gusA作为报告基因。但由于部分组织中高内源GUS背景活性或转化手段的限制,使判断基因表达定位或调控时存在很大误差。为了解决上述问题,本实验将报告基因绿色荧光蛋白(GFP)和红色荧光蛋白(RFP)融合构建双荧光标记瞬时表达载体pBI221-RFP/GFP。该载体以CaMV35S启动子驱动GFP确定转化效率,通过鉴定阳性个体的红色荧光活性分析目的基因或启动子的表达模式。并通过番茄E8和西瓜AGPL1果实特异启动子验证了该载体在启动子调控模式研究中的应用可行性。结果表明pBI221-RFP/GFP是一个可以在基因和启动子功能验证中应用的高效瞬时表达载体。 Most studies related to determining the expression profile of genes and specific promoters used histochemical localization of the reporter gene, gusA. While the histochemical method for visualizing gusA expression suffers from several limitations in the determination of gene expression and location, especially in the tissues with high background acitivty. To solve this problem, a transient expession vector pBI221-RFP/GFP, was constructed using GFP and RFP as double fluorescent marker genes. This vector used CaMV 35S promoter to drive GFP and determine the transforming efficiency. It analyzed expression profile of the target gene and promoter through the RFP activities of the tranformed tissues. Through the specific promoter AGPL1 from watermelon and E8 promoter from tomato, it is resistible to use this vector to study the expression patterns of promoters. Results indicated that the pBI221-RFP/GFP is a very efficient transient expression vector that can be verify the functions of the genes and promoters.
出处 《生物工程学报》 CAS CSCD 北大核心 2008年第12期2106-2110,共5页 Chinese Journal of Biotechnology
基金 国家自然科学基金项目(No.30671430)资助~~
关键词 绿色荧光蛋白 红色荧光蛋白 瞬时表达载体 特异性启动子 green fluorescent proteins, red fluorescent proteins, transient expession vectors, specific promoter
  • 相关文献

参考文献14

  • 1Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987, 6: 3901-3907.
  • 2Benfey PN, Chua NH. The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science, 1990, 250: 959-966.
  • 3Battraw MJ, Hall TC. Histochemical analysis of CaMV 35S promoter-β-glucuronidase gene expression in transgenic rice plants. Plant Mol Biol, 1990, 15: 527-538.
  • 4Terada R, Shimamoto K. Expression of CaMV 35S-GUS gene in transgenic rice plants. Mol Genet Genomics, 1990, 220: 389-392.
  • 5Yang NS, Christou P. Cell type specific expression of a CaMV 35S-GUS gene in transgenic soybean plants. Dev Genet, 1990, 11: 289-293.
  • 6Mascarenhas JP, Hamilton DA. Artifacts in the localization of GUS activity in anthers of petunia transformed with a CaMV 35S-GUS construct. Plant J, 1992, 2: 405-408.
  • 7吴韩英,刘敬梅,杨信廷,朱祝军,寿森炎.西瓜果实特异启动子WSP功能区域的初步定位[J].生物工程学报,2003,19(2):227-230. 被引量:5
  • 8Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science, 1994, 263: 802-805.
  • 9Wang S, Hazelrigg T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature, 1994, 369: 400-403.
  • 10Matz MV, Fradkov AF, Labas YA, et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 1999, 17(10): 969-973.

二级参考文献16

  • 1[1]Morell M K, Bloom M, Knowles V, Preiss L. Subunit structure of spinach leaf ADP-glucose pyophosphorylase. Plant Mol Biol, 1987, 85:182-187
  • 2[2]Kim I J, Kang H Y, Chung W I. Characterization of cDNAs encoding small and large subunits of ADP-glucose pyrophpsphorylases from watermelon (Citrulus valgris S.). Biosci Biotechnol Biochem, 1998, 62(3): 550-555
  • 3[3]Pev V, Reidum A, Odd-Ar O, Ernst L, Anders L, Leszek A. PCR amplification and sequence of cDNA clones for the small and large subunits of ADP-glucose pyrophosphorylase from barley tissue. Plant Mol Biol, 1992, 19: 381-389
  • 4[4]Bernd M R, Gabriele N, Lothar W. Isolation and expression analysi-s of cDNA clones encoding a small and a large subunit of ADP-glucose pyrophosphorylase from sugar beet. Plant Mol Biol, 1995, 27:191-197
  • 5[5]LIU J M(刘敬梅),CHEN D M(陈大明),XU Y(许勇),CHEN H(陈杭). Isolation of 5' flanking region of the fruit-specific gene Wml1 from watermelon by uneven PCR. Acta Biologiae Experimentalis Sinica(实验生物学报), 2002, 35(1): 31-35
  • 6[6]Jefferson R A, Kavanagh T A, Bevan M W. GUS fusion: glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987, 6: 3901-3907
  • 7[7]Bird C R, Smith C J S, Ray J A, Moureau P, Bevan M W, Bird A S, Hughes S, Morris P C, Grierson D. The tomato polygalacturonase gene and ripening specific expression in transgenic plants. Plant Mol Biol, 1988, 11:651-662
  • 8[8]Grierson D, Tucker G A, Keen J, Bird C R, Schuch W. Sequencing and identification of a cDNA clone for tomato polygalacturonase. Nucl Acid Res, 1986, 14: 8595-8603
  • 9[9]Rottman W H, Peter G F, Oeller P W, Keller J A, Shen N F, Nagy B P, Taylor LP, Campbell A D and Theologis A. 1-Aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J Mol Biol, 1991, 222(4): 937-961
  • 10[10]Holdsworth M J, Bird C R, Ray J, Schuch W, Grierson D. Structure and expression of an ethylene-related mRNA from tomato. Nucl Acid Res, 1987, 15:731-739

共引文献4

同被引文献88

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部