期刊文献+

基于RS_Adaboost的入侵检测方法 被引量:1

Intrusion detection method based on rough set and adaptive boost
下载PDF
导出
摘要 针对入侵检测系统存在的对入侵事件高漏报率和误报率,提出了一种将粗糙集(RS)方法与自适应增强(Adaboost)算法相结合的入侵检测方法。利用粗糙集理论在处理大数据量、消除冗余信息等方面的优势,减少Adaboost训练数据,提高处理速度。Adaboost是一种构建准确分类器的学习算法,它将一族弱学习算法通过一定规则结合成为一个强学习算法,从而通过样本训练得到一个识别准确率理想的分类器。实验表明,该方法具有较高的检测率和检测效率。 To solve the problem of high rate of false negatives and false positives of IDS, an intrusion detection method was proposed in this paper, which combined Rough Set and Adaboost algorithm. Rough set was used to reduce amount of Adaboost' training data and improve running speed. Adaboost was a learning algorithm for constructing accurate classifiers. It can obtain a strong learning algorithm by combining a series of weak learning algorithms through some rules. The experimental results show that the model has high detection rate and detection efficiency.
作者 李恒杰
出处 《计算机应用》 CSCD 北大核心 2009年第1期181-184,共4页 journal of Computer Applications
基金 甘肃省教育厅重点科研资助项目(0613B-03)
关键词 入侵检测 粗糙集 约简 ADABOOST算法 分类 intrusion detection Rough Set (RS) reduction Adaboost algorithm classification
  • 相关文献

参考文献6

  • 1KUMAR S. Classification and detection of computer intrusions[ D]. West Lafayette, USA: Purdue University, 1995.
  • 2陈伟统,钱沄涛.基于粗糙集理论的网络入侵检测方法[J].计算机工程,2006,32(16):133-135. 被引量:11
  • 3蔡忠闽,管晓宏,邵萍,彭勤科,孙国基.基于粗糙集理论的入侵检测新方法[J].计算机学报,2003,26(3):361-366. 被引量:57
  • 4HOCHBERG J, JACKSON K, STALLINGS C, et al. An automated system for detecting network intrusions and misuse[ J]. Computers and Security, 1993, 12(3) :253 -248.
  • 5FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of online learning and an application to boosting[ C]. Preoeedings of the 2nd European Conference on Computational Learning Theory, LNCS904. London, UK: Springer-Verlag, 1995:23-27.
  • 6University of California Irvine. KDD cup 1999 data[ EB/OL]. [ 2008 - 03 - 01 ]. http://kdd, ics. uci. edu/databases/kddcup99/kddcup99, html.

二级参考文献14

  • 1Bace R. Intrusion Detection. New York: Macmillan Technical Publishing, 2000
  • 2Forrest S, Hofmeyr S A et al. A sense of self for Unix processes. In: Proceedings of 1996 IEEE Symposium on Computer Security and Privacy, 1996. 120~128
  • 3Cohen W W. Fast effective rule induction. In: Proceedings of the 12th International Conference, Lake Taho, California, 1995. 115~123
  • 4Lee W, Stolfo S, Chan P. Learning patterns from Unix process execution traces for intrusion detection. In:Proceedings of AAAI Workshop: AI Approaches to Fraud Detection and Risk Management, 1997. 191~197
  • 5Wespi A, Dacier M et al. Intrusion detection using variable-length audit trail patterns. In: Proceedings of the 3rd International Workshop on the Recent Advances in Intrusion Detection (RAID'2000), Toulouse, France, 2000. 110~129
  • 6Asaka M, Onabuta T, Inoue T, Okazawa S, Goto S. A new intrusion detection method based on discriminant analysis. IEICE Transactions on Information and Systems,2001, E84D (5): 570~577
  • 7Pawlak Z . Rough Sets-Theoretical Aspect of Reasoning about Data. Dordrecht: Kluwer Academic Publishers, 1991
  • 8Vinterbo S,hrn A. Minimal approximate hitting sets and rule templates. International Journal of Approximate Reasoning, 2000, 25(2):123~143
  • 9Anderson J P. Computer Security Threat Monitoring and Surveill ance[R]. Fort Washington, Pennsylvania: James P Anderson Co.,1980.
  • 10Sundaram A. An Introduction to Intrusion Detection[J]. The ACM Student Magazine, 1996, 2(4): 26-41.

共引文献65

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部