期刊文献+

基于Hilbert-Huang变换的语音信号分离 被引量:3

Audio source separation based on Hilbert-Huang transform
下载PDF
导出
摘要 针对短时傅里叶变换不能正确得到非平稳信号的能量频率分布问题,提出了一种基于Hilbert-Huang变换的单信道语音信号分离的算法。该算法首先对分解得到的各内蕴模式函数分量(IMF)进行Hilbert变换,得到混合信号时频面上的Hilbert谱,然后对混合信号的Hilbert谱运用独立子空间分析的方法得出代表各个独立源信号的子空间,并对其求逆变换,从而恢复出各个源信号。通过仿真实验验证了此算法的正确性和有效性,且与短时傅里叶变换时频分析法相比较,其分离性能明显得到改善,显示了Hilbert-Huang变换在处理非平稳信号的优越性。 The energy frequency distribution of non-stationary signal could not be got correctly with short-time Fourier transform. A new method was proposed to separate the audio sources from a single mixture based on Hilbert-Huang transform. Hilbert transform combined with Intrinsic Mode Functions (IMFs) constituted Hilbert Spectrum (HS) of mixture, which was a time-frequency representation of a non-stationary signal. The HS of mixture was used to derive the independent source subspaces. The time domain source signals were reconstructed by applying the inverse transformation. The simulated results show that the proposed method is efficient and improves the separation performance. It was observed that HS-based TF representation performed better than using STFT.
出处 《计算机应用》 CSCD 北大核心 2009年第1期227-229,255,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60672034)
关键词 Hilbert—Huang变换 内在模式分解 独立子空间分析 C-均值算法 Hilbert-Huang Transform (HHT) Empirical Mode Decomposition (EMD) Independent Subspace Analysis (ISA) C-means algorithm
  • 相关文献

参考文献6

  • 1ROWEIS S T. One microphone source separation [ EB/OL]. [ 2008 -01 -01]. http://www, gatsby, ucl. ac. uk/-roweis/papers/onemic. ps. gz.
  • 2JANG G J, LEC T W, OH Y H. Single channel signal separation using time-domain basis functions[ J]. IEEE Signal Process Letters, 2003, 10(6) : 168 - 171.
  • 3CASEY M A, WESTNER A. Separation of mixed audio sources by independent subspace analysis [ C] // Proceedings of the International Computer Music Conference. Berlin: [ s. n. ], 2000:154 - 161.
  • 4HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [ EB/OL]. [2008 -05 -01]. http://keck. ucsf. edu/-schenk/Huang_eta198, pdf.
  • 5POCZOS B, LORINCZ A. Independent subspace analysis using geodesic spanning trees [ C]// Proceedings of the 22nd International Conference on Machine Learning. New York: ACM Press, 2005: 673 - 680.
  • 6BEZDEK J C. Pattern recognition with fuzzy objective function algorithms [M]. New York: Plenum Press, 1981:231 -236.

同被引文献23

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部