期刊文献+

改进小波包结合支持向量机分类器的无线Ad Hoc网络性能评价

Wireless Ad Hoc netwrok performance evaluation by IWPA and SVMDT
下载PDF
导出
摘要 使用训练集大小、特征提取方法和识别方法作为影响识别错误率的三个因素,采用改进小波包(IWPA)和SVMDT相结合的方法对无线Ad Hoc网络的性能进行了评价。通过采用方差分析和最小二次无偏估计的方法等数理统计方法分析实验数据,获得了各个因素的主效应及其之间的相互效应对识别错误率边际均值的具体影响程度。研究结果表明,IWPA特征提取方法的性能远优于WPA和WT,SMDT分类方法的性能也优于RBF和SA,并且IWPA和SMDT相结合产生了最佳的交互效应。 Improved wavelet packet analysis and support vector machine were used to evaluate the performance of wireless Ad Hoe network. Experimental results show that the performance of Improved Wavelet Packet Analysis (IWPA) is much better than Wavelet Packet Analysis (WPA) and WT ( wavelet transform). And the method of SVMDT is superior to RBF SA (simulated annealing). That IWPA combines SVMDT can get the best effect.
出处 《计算机应用》 CSCD 北大核心 2009年第1期312-314,共3页 journal of Computer Applications
关键词 改进小波包 SVM决策树 径向基神经网 模拟退火算法 Improved Wavelet Packet Analysis (IWPA) SVM Decision Tree (SVMDT) Radial Basis Function (RBF) Simulated Annealing (SA)
  • 相关文献

参考文献17

  • 1LIU S, MING G. An effective learning approach for nonlinear system modeling[ C]//Proceedings of the 2004 IEEE International Symposium on Intelligent Control. [ S. l. ] : IEEE Press, 2004:73 - 77.
  • 2TIRUSEW A, MARIUSH K, GILBERTO U, et al. Support vector machines (SVMs) for monitoring network design[ J]. Ground Water, 2005,43 (3) : 413 - 422.
  • 3HE FU - JUN, SHI WEN - GANG. WPT - SVMs based approach for fault detection of valves in reciprocating pumps[ C]//Proceedings of the American Control Conference 2002. [ S. l. ]: IEEE Press, 2002, 6:4566 - 4570.
  • 4FRANK Y S, CHENG SHOU-XIAN. Improved feature reduction in input and feature spaces[ J]. Pattern Recognition, 2005, 38(5):651 - 659.
  • 5SUN JIAN-CHENG, YU LUN, YANG GUANG, et al. Modelling of chaotic systems with recurrent least squares support vector machines combined with stationary wavelet transform[M]. Berlin: Springer- Verlag, 2005: 424 - 429.
  • 6HE XUE-WEN, ZHAO HAI-MING. Support vector machine and its application to machinery fault diagnosis[ J]. Journal of Central South University: Science and Technology, 2005, 36(1) : 97 - 101.
  • 7KYUNGMI L, VLADIMIR E C. Support vector machine classification of ultrasonic shaft inspection data using discrete wavelet transform[ C]// IC-AI '04: Proceedings of the International Conference on Artificial Intelligence. Berlin: Springer-Verlag, 2004:848 - 854.
  • 8GE HAI-FENG, DING HUI, LIU JUN-HUA. Gas identification by wavelet transform-based fast feature extraction and support vector machine from temperature modulated semiconductor gas sensors [ C]// TRANSDUCERS '05 - 13th International Conference on Solid-State Sensors and Actuators and Microsystems, 2005:1888 - 1891.
  • 9CARLOS M T, JESUS B A, MIGUEL A F. Facial identification using transformed domain by SVM [ C]//TRANSDUCERS '05: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Digest of Technical Papers. [ S. l. ] : IEEE Press, 2004:321 - 324.
  • 10LIU ZUN-XIONG, ZHANG DE:YUN, LIAO HUI-CHUAN. Multiscale combination prediction model with least square support vector machine for network traffic[ M]. Berlin: Springer-Verlag, 2005: 385 - 390.

二级参考文献3

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部