摘要
根据门函数响应法,任意输入函数x(t)可以看作一系列宽度7在变化的门函数的代数和。在求解线性系统时,由于信号的拉氏变换具有线性性质,因此,可将一系列宽度T在变化的门函数分别进行拉氏变换,然后叠加求和,即可得该函数的拉氏变换。本文提出的方法对变流技术与计算机控制领域内常遇到的由矩形脉冲函数分量组成的信号求拉氏变换,具有突出的优点。
According to the gate function response method, any input function can be considered as algebraic sum of a series of gate functions whose widthes are different. In the solution of the linear systems, due to the linear quality of Laplace transform of signals, we can get each gate function Laplace transform and then sum them. The method is very useful in the solution of Laplace transform of signals which are comprised of rectangular pulse functions in the fields of converting technique and computer control engineering.
出处
《机车电传动》
北大核心
1990年第6期15-18,共4页
Electric Drive for Locomotives
关键词
数学变换
拉普拉斯变换
函数
mathematical transform, Laplace transform, Du's transform, function, time-domain analysis, wave form.