期刊文献+

最大度至少为8的可平面图的全染色 被引量:4

原文传递
导出
摘要 证明了最大度至少为8且不含带弦5圈或带弦6圈的可平面图是9全可染的.
作者 沈岚 王应前
出处 《中国科学(A辑)》 CSCD 北大核心 2008年第12期1356-1364,共9页 Science in China(Series A)
基金 浙江省教育厅自然科学基金重点(批准号:20070441)资助项目
  • 相关文献

参考文献10

  • 1Bondy J A, Murty U S R. Graph Theory. Berlin: Springer, 2008
  • 2Vizing V G. Some unsolved problems in graph theory. Uspekhi Mat Nauk J, 23:117-134 (1968)
  • 3Behzad M. Graphs and their chromatic numbers. Ph D Thesis. MI: Michigan State University, 1965
  • 4Wang Y Q, Shangguan M L, Li Q. On total chromatic number of planar graphs without 4-cycles. Sci China, Set A-Math, 50:81-86 (2007)
  • 5Borodin O V, Kostochka A V, Woodall D R. Total coloring of planar graphs with large maximum degree. J Graph Theory, 26(1): 53-59 (1997)
  • 6Wang W F. Total chromatic number of planar graphs with maximum degree ten. Graph Theory J, 54: 91-102 (2007)
  • 7Kowalik L, Sereni J S, Skrekovski R. Total colouring of plane graphs with maximum degree nine. Manuscript
  • 8Borodin O V, Kostochka A V, Woodall D R. Total colouring of planar graphs with large girth. European Combi, 19:19-24 (1998)
  • 9Hou J F, Liu G Z, Cai J S. List edge and list total coloring of planar graphs without 4-cycles. Theory Comput Sci J, 369:250-255 (2006)
  • 10Hou J F, Zhu Y, Liu G Z, et al. Total coloring of planar graphs without small cycles. J Graphs Comb, 24:91-100 (2008)

同被引文献21

  • 1强会英,李沐春,晁福刚,张忠辅.完全二部图的广义Mycielski图的全染色与边染色[J].数学的实践与认识,2007,37(7):138-142. 被引量:3
  • 2BONDY J A, MURTY U S R. Graph theory with applications[M]. London: MacMillan, 1976.
  • 3BEHZAD M. Graphs and their chromatic numbers[ D]. Michigan: Michigan State University, 1965.
  • 4VIZING V G. Some unresolved problems in graph theory[ J]. Uspekhi Mat Nauk, 1968, 23:117-134.
  • 5BORODIN O V, KOSTOCHKA A V, WOODALL D R. Total coloring of planar graphs with large maximum degree [ J ]. J Graph Theory, 1997, 26:53-59.
  • 6WANG W F. Total chromatic number of planar graphs with maximum degree ten[ J]. J Graph Theory, 2007, 54:91-102.
  • 7KOWALIK L, SERENI J S, SKREKOVSKI R. Total colouring of plane graphs with maximum degree nine[J]. SIAM J Discrete Math, 2008, 22(4):1462-1479.
  • 8BORODIN O V, KOSTOCHKA A V, WOODALL D R. Total coloring of planar graphs with large girth [J]. Europ J Combin, 1998, 19:19-24.
  • 9WANG P, WU J L. A note on total colorings of planar graphs without 4-cycles [J]. Discuss Math Graph Theory, 2004, 24: 125-135.
  • 10LIU B, HOU J F, WU J L, et al. Total colorings and list total colorings of planar graphs without intersecting 4-cycles [ J ]. Discrete Math, 2009, 309(20) :6035-6043.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部