摘要
证明了最大度至少为8且不含带弦5圈或带弦6圈的可平面图是9全可染的.
出处
《中国科学(A辑)》
CSCD
北大核心
2008年第12期1356-1364,共9页
Science in China(Series A)
基金
浙江省教育厅自然科学基金重点(批准号:20070441)资助项目
参考文献10
-
1Bondy J A, Murty U S R. Graph Theory. Berlin: Springer, 2008
-
2Vizing V G. Some unsolved problems in graph theory. Uspekhi Mat Nauk J, 23:117-134 (1968)
-
3Behzad M. Graphs and their chromatic numbers. Ph D Thesis. MI: Michigan State University, 1965
-
4Wang Y Q, Shangguan M L, Li Q. On total chromatic number of planar graphs without 4-cycles. Sci China, Set A-Math, 50:81-86 (2007)
-
5Borodin O V, Kostochka A V, Woodall D R. Total coloring of planar graphs with large maximum degree. J Graph Theory, 26(1): 53-59 (1997)
-
6Wang W F. Total chromatic number of planar graphs with maximum degree ten. Graph Theory J, 54: 91-102 (2007)
-
7Kowalik L, Sereni J S, Skrekovski R. Total colouring of plane graphs with maximum degree nine. Manuscript
-
8Borodin O V, Kostochka A V, Woodall D R. Total colouring of planar graphs with large girth. European Combi, 19:19-24 (1998)
-
9Hou J F, Liu G Z, Cai J S. List edge and list total coloring of planar graphs without 4-cycles. Theory Comput Sci J, 369:250-255 (2006)
-
10Hou J F, Zhu Y, Liu G Z, et al. Total coloring of planar graphs without small cycles. J Graphs Comb, 24:91-100 (2008)
同被引文献21
-
1强会英,李沐春,晁福刚,张忠辅.完全二部图的广义Mycielski图的全染色与边染色[J].数学的实践与认识,2007,37(7):138-142. 被引量:3
-
2BONDY J A, MURTY U S R. Graph theory with applications[M]. London: MacMillan, 1976.
-
3BEHZAD M. Graphs and their chromatic numbers[ D]. Michigan: Michigan State University, 1965.
-
4VIZING V G. Some unresolved problems in graph theory[ J]. Uspekhi Mat Nauk, 1968, 23:117-134.
-
5BORODIN O V, KOSTOCHKA A V, WOODALL D R. Total coloring of planar graphs with large maximum degree [ J ]. J Graph Theory, 1997, 26:53-59.
-
6WANG W F. Total chromatic number of planar graphs with maximum degree ten[ J]. J Graph Theory, 2007, 54:91-102.
-
7KOWALIK L, SERENI J S, SKREKOVSKI R. Total colouring of plane graphs with maximum degree nine[J]. SIAM J Discrete Math, 2008, 22(4):1462-1479.
-
8BORODIN O V, KOSTOCHKA A V, WOODALL D R. Total coloring of planar graphs with large girth [J]. Europ J Combin, 1998, 19:19-24.
-
9WANG P, WU J L. A note on total colorings of planar graphs without 4-cycles [J]. Discuss Math Graph Theory, 2004, 24: 125-135.
-
10LIU B, HOU J F, WU J L, et al. Total colorings and list total colorings of planar graphs without intersecting 4-cycles [ J ]. Discrete Math, 2009, 309(20) :6035-6043.
引证文献4
-
1谭香,陈宏宇,徐兰.最大度为6且不含相交4-圈的三类平面图的全染色[J].山东大学学报(理学版),2010,45(4):31-35. 被引量:1
-
2李志江,卢建立.Schrijver图S_G(2k+2,k)的全色数[J].河北师范大学学报(自然科学版),2014,38(1):6-9.
-
3黑红武,李炳照.不含5-圈和相邻6-圈的平面图的全染色[J].数学的实践与认识,2016,46(16):186-190. 被引量:1
-
4常建.具有稀疏短圈的平面图的全染色[J].内蒙古师范大学学报(自然科学汉文版),2020,49(2):95-99. 被引量:1
-
1顾秀松,孙志人,张洁.满足xyz=--+的变换图G^(xyz)[J].南京师大学报(自然科学版),2009,32(3):12-14. 被引量:1
-
2倪伟平.最大度是5的可平面图的边染色[J].华东师范大学学报(自然科学版),2011(2):32-38.
-
3倪伟平.最大度是6不含相邻k-圈的可平面图的边染色[J].华东师范大学学报(自然科学版),2010(5):20-26. 被引量:2
-
4朱海洋,顾毓,盛景军,吕新忠.可平面图的r-hued染色(英文)[J].应用数学,2016,29(2):308-313.
-
5章齐君,王应前.关于可平面图的3-列表染色的一个注记[J].浙江师范大学学报(自然科学版),2009,32(4):416-420.
-
6孙向勇,吴建良.一些平面图的无圈边染色[J].山东大学学报(理学版),2008,43(9):63-67.
-
7徐灵姬,王应前.既不含4-圈又不含6-圈的平面图的非正常染色[J].中国科学:数学,2013,43(1):15-24. 被引量:6
-
8倪伟平.最大度是4的可平面图是第一类图的充分条件[J].华东师范大学学报(自然科学版),2010(3):85-91. 被引量:4
-
9何春阳,郭曙光.不含三圈的k圈图的拟拉普拉斯和拉普拉斯谱半径[J].高校应用数学学报(A辑),2014,29(3):295-302. 被引量:2
-
10夏滨.探析几类函数方程的求解方法[J].读与写(教育教学刊),2012,9(8):37-38.