期刊文献+

图的上可嵌入性与围长及相邻顶点度和

原文传递
导出
摘要 G是一个阶为n围长为g的简单图,u和v是G中任意两个相邻顶点,如果d_G(u)+d_G(v)≥n-2g+5,则G是上可嵌入的;如果G是2-边连通(或3-边连通)图,则当d_G(u)+d_G(v)≥n-2g+3(或d_G(u)+d_G(v)≥n-2g-5)时G是上可嵌入的,并且上面3个下界都是紧的.
出处 《中国科学(A辑)》 CSCD 北大核心 2008年第12期1365-1371,共7页 Science in China(Series A)
基金 国家自然科学基金(批准号:10571013)资助项目
  • 相关文献

参考文献18

  • 1Nordhause E A, Stewart B M, White A T. On the maximum genus of a graph. J Combin Theory, 11: 151-185 (1971)
  • 2Ringeisen R. The maximum genus of a graph. Ph D Thesis. MI: Michigan State University, 1970
  • 3Ringeisen R. Upper and lower embeddable graphs. In: Graph Theory and Applications. Lecture Notes in Math, Vol 303, Berlin-New York: Springer-Verlag, 1972
  • 4Ringeisen R. Determining all compact orientable 2-manifolds upon which Km,n has 2-cell imbeddings. J Combin Theory Ser B, 12:101-104 (1974)
  • 5Kundu S. Bounds on number of disjoint spanning trees. J Combin Theory Ser B, 17:199-203 (1974)
  • 6Jaeger F, Payan C, Xuong N H. A classes of upper embeddable graphs. J Graph Theory, 3:387-391 (1979)
  • 7Jungerment M. A characterization of upper embeddable graphs. Trans Math Soc, 241:401-406 (1979)
  • 8Skoviera M. The maximum genus of graphs diameter two. Discret Math, 87:175-180 (1991)
  • 9Huang Y, Liu Y. Face size and the maximum genus of a graph. J Combin Theory Set B, 80:356-370 (2000)
  • 10Huang Y, Liu Y. The degree sum of nonadjacent vertices and up-embeddability of graphs. Chin Ann Math Ser A, 5 (19): 651-656 (1998)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部