期刊文献+

具有多约束连续体结构仿生拓扑优化方法

TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES WITH MULTI-CONSTRAINTS
下载PDF
导出
摘要 通过浮动参考区间法分析具有多约束连续体结构拓扑优化问题。浮动区间法是指将结构的拓扑优化过程看作是骨骼重建过程,通过引入参考应变区间,将结构中所有各点处主应变绝对值落入参考应变区间作为重建平衡状态,当结构处于重建平衡状态时获得结构的最优材料分布。为了使得优化结果满足给定的性态约束,参考应变区间在优化迭代过程中须不断变化。讨论了几种常见性态约束对结构性能的要求。给出了结构具有多约束时优化问题的算法。数值算例表明该方法可行。 The topology optimization problems with multi-constraints are solved by the floating-reference- interval method which simulateg the structural topology optimization process with a bone remodelling process based on Wolff's law. The optimal material distribution of structure is obtained when the structure reaches a remodelling equilibrium state. At that state, the absolute values of principal strains locate in an interval of reference strain. To satisfy the character constraints of an optimal problem, the reference interval must change during iteration process. Several types of character constraints, e.g., stress constraint, displacement constraint and volume constraint of structure, are discussed about their influence on the reference interval. The algorithm for solving the topology optimization problems with multi-constraints is given and is verified to be feasible by numerical examples.
出处 《工程力学》 EI CSCD 北大核心 2008年第12期53-59,共7页 Engineering Mechanics
基金 西北农林科技大学人才基金
关键词 拓扑优化 多约束 浮动参考应变区间 连续体结构 骨骼重建 topology optimization multi-constraints floating interval of reference strain continuum structure bone remodelling
  • 相关文献

参考文献15

  • 1Eschenauer H A, Olhoff N. Topology optimization of continuum structures: A review [J]. Applied Mechanics Review, 2001, 54:331--390.
  • 2Bendsφe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method [J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71:197--224.
  • 3Bendsoe M P. Optimal shape design as a material distribution problem [J]. Structural Optimization, 1989, i: 193--202.
  • 4Rozvany G I N, Zhou M, Birker T. Generalized shape optimization without homogenization [J]. Structural Optimization, 1992, 4: 250--252.
  • 5Eschenauer H A, Kobelev V V, Schumacher A. Bubble method for topology and shape optimization of structures [J]. Structural Optimization, 1994, 8: 42--51.
  • 6Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization [J]. Computers and Structures, 1993, 49: 885--896.
  • 7Wang M Y, Wang X, Guo D. A level set method for structural topology optimization [J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192: 227--246.
  • 8蔡坤,张洪武,陈飙松.基于Wolff法则的连续体结构拓扑优化方法[J].力学学报,2006,38(4):514-521. 被引量:9
  • 9Cai K, Chen B S, Zhang H W. Topology optimization of continuum structures based on a new bionics method [J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2006, 8: 233--242.
  • 10Wolff J. The law of bone remodelling [M]. Berlin: Springer-Verlag, 1986.

二级参考文献23

  • 1Cowin SC.Wolff's law of trabecular architecture at remodelling equilibrium.Journal of Biomechanical Engineering,1986,108(1):83~88
  • 2Odgaard A,Kabel J,van Rietbergen B,et al.Fabric and elastic principal directions of cancellous bone are closely related.Journal of Biomechanics,1997,30(5):487~495
  • 3Zysset PK,Curnier A.An alternative model for anisotropic elasticity based on fabric tensors.Mechanics of Materials,1995,21(4):243~250
  • 4He QC,Curnier A.A more fundamental approach to damaged elastic stress-strain relations.International Journal of Solids and Structures,1995,32(10):1433~1457
  • 5Bendsφe MP,Kikuchi N.Generating optimal topologies in structural design using a homogenization method.Computer Methods in Applied Mechanics and Engineering,1988,71(3):197~224
  • 6Bendsφe MP.Optimal shape design as a material distribution problem.Structural Optimization,1989,1:193~202
  • 7Mei YL,Wang XM.A level set method for structural topology optimization and its applications.Advances in Engineering Software,2004,35(7):415~441
  • 8Rodriguez-Velazquez J,Seireg A.Optimizing the shapes of structures via a rule based computer program.Computers in Mechanical Engineering,1985,4(1):2~28
  • 9Baumgartner A,Harzheim L,Mattheck C.SKO (soft kill option):the biological way to find an optimum structure topology.International Journal of Fatigue,1992,14(6):387~393
  • 10Xie YM,Steven GP.A simple evolutionary procedure for structural optimization.Computers and Structures,1993,49(5):885~896

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部