摘要
讨论了载体位置与姿态均不受控情况下,漂浮基双臂空间机器人系统跟踪惯性空间轨迹的控制问题。为了克服空间机器人系统控制方程关于惯性参数的非线性性质,空间机器人被表示为欠驱动系统,保持了系统动力学方程关于惯性参数的线性关系;对系统的运动学分析表明,联系机械臂末端抓手运动线速度与机器人关节铰速度的Jacobi关系也可以通过增广向量的处理,得到保持惯性参数线性关系的增广广义Jacobi关系。基于以上结果,针对系统参数不确定的情况下,设计了自由漂浮双臂空间机器人跟踪惯性空间期望轨迹的鲁棒混合自适应控制方案。由于在上述系统运动学、动力学分析中耦合了系统动量守恒关系,所提出的控制方案具有不需要测量、反馈机器人载体位置、移动速度、加速度的优点;同时,由于上述控制方案仅在参考速度、加速度的计算中采取了参数调节方式,而在控制部分对不确定参数采用了保持鲁棒性的方法,有效地减少了计算量,有助于缓解空间机器人机载计算机运算能力有限的矛盾。通过对一个平面双臂空间机器人系统的数值仿真,验证了算法的有效性。
In this paper, the kinematics and dynamics of free-floating space robot system with dual-arms is studied. In order to overcome the difficulty that the dynamic equation of the system cannot be linearly parameterized, the space robot system is modeled as an under-actuated robot system. Thus, the system dynamic equation can be linearly parameterized. With the momentum conservation of the system, the kinematics of the system is analyzed, and it is shown that the generalized Jacobi matrix can also be linearly dependent on a group of inertial parameters. Based on the techniques proposed above, a robust and adaptive composite control scheme is proposed for end-effector tracking the desired trajectory in inertia space. The control scheme avoids measuring the position, velocity and acceleration of the floating base with respect to the orbit, because of an effective exploitation of the particular properties of the system dynamics. Besides, the proposed control scheme is computationally simple, because the controller is robust to the uncertain inertial parameters. The control scheme is verified in a simulation study.
出处
《工程力学》
EI
CSCD
北大核心
2008年第12期229-234,共6页
Engineering Mechanics
基金
国家自然科学基金项目(10372022
10672040)
福建省自然科学基金项目(E0410008)
关键词
双臂空间机器人
自由漂浮
系统运动学
系统动力学
增广变量法
鲁棒混合自适应控制
space robot system with dual-arms
free-floating
system kinematics
system dynamics
augmentedvector approach
robust and adaptive composite control