期刊文献+

膜结构极小曲面找形分析的一种线性化近似方法及其有限元线法求解 被引量:1

A LINEARIZED METHOD FOR MINIMAL SURFACE FORM-FINDING OF MEMBRANE STRUCTURES AND ITS FEMOL SOLUTION
下载PDF
导出
摘要 膜结构的极小曲面找形分析是一个非线性问题,求解时需要进行大量非线性迭代,并需要一个合理的初始解作为收敛的保证,计算繁琐、量大且难度高。该文利用积分中值定理和归一化手段对曲面面积的表达式进行一种特殊的线性化,将原非线性问题转化为线性问题,使问题得到本质性的简化。该线性问题的解答作为原问题高质量的近似解,既可用于结构的初步设计阶段了解膜面的大概形状,亦可作为精细的找形分析中非线性迭代求解的初始解。该线性化方法的误差主要来源于映射参数分布的不均匀性,对于常见的可用平行四边形剖分的膜,其逼近精度相当高。有限元线法(FEMOL)是一种基于常微分方程(ODE)求解的半解析方法,其高度的解析性和解的光滑性特别适合于膜结构的分析。该文采用高次线法单元分析求解转化后的线性问题,只需一次求解,无需任何迭代。数值算例表明:该方法是一种简单、高效、高逼近度的膜结构找形分析方法。 The minimal surface form-finding analysis of membrane structures is a nonlinear problem. Its strong nonlinearity makes its computation to be a great challenge which usually needs a lot of iterations and a rational initial solution to guarantee the convergence of the solution process. This paper substantially simplifies this problem into a linear problem by using the integral mean-value theorem and normalization technique, the solution of which approaches the minimal surface with high accuracy. This method can be used either for an approximate form of the membrane surface in the primary design stage or for an initial solution for further computation of the original nonlinear problem. The error of the present method mainly comes from the non-uniformity of the mapping parameters, and thus this method works very well for most membranes whose shapes are close to parallelogram. As a semi-analytical method based on ordinary differential equation (ODE) techniques, the finite element method of lines (FEMOL) is very suitable for membrane problems due to its semi-analytical property and smoothness of its solutions. FEMOL is applied to the linearized problem proposed in the paper. Numerical examples given show that this linearized method is simple, efficient and reliable with highly satisfactory accuracy.
出处 《工程力学》 EI CSCD 北大核心 2008年第A02期1-6,共6页 Engineering Mechanics
基金 长江学者和创新团队发展计划项目(IRT00736)
关键词 膜结构 找形分析 极小曲面 线性化 有限元线法 membrane structures form-finding analysis minimal surface linearization FEMOL
  • 相关文献

参考文献11

  • 1Grundig L. Minimal surfaces for finding forms of structural membranes [J]. Computers and Structures, 1988, 30: 679--683.
  • 2Hildebmndt S, Tromba A. Mathematics and optimal form [M]. New York: Scientific American Library, 1985.
  • 3Sheck H J. The force density method for form finding and computation of general networks [J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3: 115-- 134.
  • 4Maurin B, Motro R. The surface stress density method as a form finding tool for tensile membrane [J]. Engineering Structures, 1998, 20(8): 712--719.
  • 5Barnes M. Form and stress engineering of tension structures [J]. Structural Engineering Review, 1994, 6(3-4): 175--202.
  • 6Lewis W J, Lewis T S. Application of formian and dynamic relaxation to the form finding of minimal surfaces [J]. Journal of the IASS, 1996, 37(3): 165--186.
  • 7Haug E, Powell G H. Finite element analysis of nonlinear membrane structures. In: tension and space structures (v.2) Proceedings of the 1971 IASS Pacific Symposium [C]. Tokyo and Kyoto, 1972: 165-- 175.
  • 8Haber R B, Abel J F, Greenberg D R An integrated design system for cable-reinforced membranes using computer graphics [J]. Computers & Structures, 1981, 14(3-4): 261 --280.
  • 9Yuan S. The finite element method of lines: Theory and applications [M]. Beijing: Science Press, 1993.
  • 10Ascher U, Christiansen J, Russell R D. Algorithm 569, COLSYS: Collocation software for boundary value ODEs [D2] [J]. ACM Transactions on Mathematical Software, 1981, 7: 223--229.

同被引文献11

  • 1Haber R B, Abel J F. Initial equilibrium solution methods for cable reinforced membranes : Part I--Formulations [ J ]. Computer Methods in Applied Mechanics and Engineering, 1982, 30(3): 263-284.
  • 2Hildebrandt S, Tromba A. Mathematics and optimal form [ M]. New York: Scientific American Library, 1985.
  • 3Haug E, Powell G H. Finite element analysis of nonlinear membrane structures [ C ]//Proceedings of the 1971 IASS Pacific Symposium. Tokyo, 1972:165-175.
  • 4Barnes M R. Form-finding and analysis of prestressed nets and membranes [ J]. Computers & Structures, 1988, 30 (3) : 685-695.
  • 5Linkwitz K. Form finding by the "direct approach" and pertinent strategies for the conceptual design of prestressed and hanging structures [ J ]. International Journal of Space Structures, 1999, 14(2): 73-88.
  • 6Bletzinger K U, Ramm E. A general finite element approach to the form finding of tensile structures by the updated reference strategy [ J ]. International Journal of Space Structures, 1999, 14(2): 131-145.
  • 7Maurin B, Motro R. The surface stress density method as a form finding tool for tensile membrane [ J ]. Engineering Structures, 1999, 20(8): 712-719.
  • 8Boner J, Mahaney J. Form-finding of membrane structures by the updated reference method with minimum mesh distortion [ J ]. International Journal of Solids and Structures, 2001, 38(32) : 5469-5480.
  • 9Yuan S. The Finite Element Method of Lines: Theory and Applications[ M ]. Beijing: Science Press, 1993.
  • 10Ascher U, Christiansen J, Russell R D. Algorithm 569: COLSYS: Collocation software for boundary-value ODEs [ D2] [ J ]. ACM Transactions on Mathematical Software, 1981, 7(2) : 223-229.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部