摘要
针对孵化系统复杂的动态非线性特性,提出一种基于粒子群优化的模糊控制算法,该算法针对模糊控制器量化因子参数调节的困难,采用PSO的惯性系数的自适应调整机制,用以加速优化算法的收敛性和维持群体的多样性,以寻优模糊控制器量化因子参数,将该方法应用于孵化过程,较好的实现了温度、湿度和含氧量的稳定控制。仿真和实际运行结果表明了所提出的算法的有效性和优越性。
In view of the characteristics of incubation control system which is complicated, dynamic and nonlinear, a fuzzy control algorithm was proposed based on the particle swarm optimization. Because fuzzy controller parameters are difficult to modified, adaptive tuning laws of inertia coefficient are adopted for accelerating particle converges and sustaining community diversity, thus the preferable fuzzy controller parameters are easily obtained Applying the algorithm to the incubation, the temperature, humidity and oxygen content were controlled to be stable. Simulation and application of system show that the algorithm is effective and has excellent performance.
出处
《系统仿真学报》
EI
CAS
CSCD
北大核心
2008年第24期6668-6672,共5页
Journal of System Simulation
基金
中南林业科技大学青年科学研究基金重点项目(07010A)
湖南省自然科学基金项目(02JJY203)
永科发[2004]19号
关键词
孵化
模糊控制
粒子群优化(PSO)
量化因子
incubation
fuzzy control
particle swarm optimization
inertia coefficient