期刊文献+

广义Beta Ⅱ分布子流形的几何结构 被引量:2

Geometric Structure of Sub-manifolds of the Generalized Beta Type Ⅱ Distribution
下载PDF
导出
摘要 研究分布流形的几何结构是信息几何的一项重要课题。本文给出了基于信息几何的角度广义Beta Ⅱ分布子流形的几何结构;计算出此流形的Fisher信息阵和黎曼联络,进而求出高斯曲率;并在该流形上定义Kullback-Leibler散度及J-散度,并说明散度之间的关系以及各种特殊情况下的散度;最后给出流形上的测地线方程。 Investigating the geometric structures of the distribution manifolds is a basic task in information geometry. In this paper, the submanifolds of the generalized beta type Ⅱ distribution and obtain is investigated its geometric structure. The Fish information matrix, Riemannian connections and Gaussian curvatures of the submanifolds of the generalized beta type Ⅱ distribution are given. At last, Kullback-Leibler divergence, J-divergence and geodesic equations are obtained.
出处 《科技导报》 CAS CSCD 2008年第22期34-37,共4页 Science & Technology Review
关键词 流形 高斯曲率 散度 信息几何 manifold Gaussian curvature divergence information geometry
  • 相关文献

参考文献8

  • 1Amari S, Nagaoka H. Metbods of information geometry [M]. London: Oxford University Press, 2000.
  • 2Amari S. Differential geometrical methods in statistics [M]. Germany: Springer Lecture Notes in Statistics, 1985.
  • 3Dodson C T J. Gamma manifolds and stochastic geometry[C]//Proceedings of the Workshop on Recent Topics in Differential Geometry Santiago de Compostela. 1997: 85-92.
  • 4Ojo M O, Olapade A K. On a six-parameter generalized logisticdistribution[J]. Kragujevac J Math, 2004, 26: 31-38.
  • 5Cao L, Sun H, Zhang Z. The applications of information geometry to stock prices[J]. Journal of Beijing Institute of Technology, 2007, 27: 91-94.
  • 6Patil G P, Taillie C. Statistical evaluation of the attainment of interim cleanup standards at hazardous waste sites [J]. Environmental and Ecological Statistics, 1994, (1): 333-351.
  • 7仲锋惟,孙华飞,张真宁.Fisher Z分布流形的几何结构[J].科技导报,2007,25(9):33-36. 被引量:6
  • 8Zhong F, Sun H, Zhang Z. The geometry of the dirichlet manifold [J]. Journal of the Korean Mathematical Society, 2008, 45(3): 859-870.

二级参考文献6

  • 1AMARI S. Differential geometrical methods in statistics[M]. Germany:Springer lecture Notes in Statistics, 1985.
  • 2AMARI S. Methods of information geometry [M]. England: Oxford University Press, 2000.
  • 3DODSON C T. Gamma manifolds and stochastic geometry[C]// Proceedings of the workshop on recent topics in differential geometry. Santiago de Compostela, 1997: 16- 19.
  • 4AMARI S. Differential geometry of a parametric family of invertible linear systems Riemannian metric, dual affine connections and divergence [J]. Mathematical Systems Theory, 1987(20): 53-82.
  • 5ABDEL-ALL N H, ABD-ELLAH H N, MOUSTAFA H M. Information geometry of random walk distribution[J]. Publ Math Debrecen, 2003(63): 51-66.
  • 6DODSON C T, MATSUZOE H. An affine embedding of the gamma manifold[J]. Appl Sci, 2003(5): 1-6.

共引文献5

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部