摘要
研究分布流形的几何结构是信息几何的一项重要课题。本文给出了基于信息几何的角度广义Beta Ⅱ分布子流形的几何结构;计算出此流形的Fisher信息阵和黎曼联络,进而求出高斯曲率;并在该流形上定义Kullback-Leibler散度及J-散度,并说明散度之间的关系以及各种特殊情况下的散度;最后给出流形上的测地线方程。
Investigating the geometric structures of the distribution manifolds is a basic task in information geometry. In this paper, the submanifolds of the generalized beta type Ⅱ distribution and obtain is investigated its geometric structure. The Fish information matrix, Riemannian connections and Gaussian curvatures of the submanifolds of the generalized beta type Ⅱ distribution are given. At last, Kullback-Leibler divergence, J-divergence and geodesic equations are obtained.
出处
《科技导报》
CAS
CSCD
2008年第22期34-37,共4页
Science & Technology Review
关键词
流形
高斯曲率
散度
信息几何
manifold
Gaussian curvature
divergence
information geometry