期刊文献+

多传感器噪声方差未知情况下的异步航迹融合 被引量:1

Asynchronous Track Fusion in Multi-Sensor Systems without Knowledge of Noise Covariance
下载PDF
导出
摘要 针对分布式多传感器数据融合系统,提出了一种多传感器异步航迹融合算法。现有的多传感器信息融合算法大都基于Kalman滤波器,要求噪声方差已知,并且假定各传感器同步采样,不考虑通信延迟。本文在分布式处理的模式下,基于各传感器在扩展记忆因子递推最小平方(EFRLS)估计形成本地航迹的基础上,提出了一种融合误差均方差矩阵的迹最小意义下的异步目标航迹融合算法。仿真实验结果表明,这种融合算法是有效的,算法接近集中式融合算法的精度。 For distributed multisensor data fusion system, a multisensor asynchronous track fusion algorithm is proposed. In multi-sensor information fusion, the studied track fusion algorithm is based on the optimal Kalman filter,the filter requires knowledge of the noise covariance. And the present distributed estimation architectures assume that the sensors used are synchronous and no communication delays exist. But in the real environment, the noise variance is unknown in practice and the sensors used are asynchronous. An algorithm of asynchronous track fusion by minimizing the trace of the fusion error covariance matrix is presented from the extended forgetting factor recursive least square estimator. Simulation shows a satisfied precision in their performance, it approaches the centralized processing architecture.
作者 赵威 徐毓
机构地区 空军雷达学院 [
出处 《传感技术学报》 CAS CSCD 北大核心 2008年第12期2031-2034,共4页 Chinese Journal of Sensors and Actuators
关键词 航迹融合 噪声方差未知 扩展记忆因子递推最小平方(EFRLS)估计 track fusion without knowledge of noise covariance extended forgetting factor recursive least squares(EFRLS) estimator
  • 相关文献

参考文献7

  • 1Alouani A T, Gray J E, and McCabel D H. Theory of Distributed Estimation Using Multiple Asynchronous Sensors [J ]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(2) : 717-722.
  • 2Alouani A T, Gray J E. Generalized Asynchronous Track Fusion with Feedback[J]. Proceedings of SPIE , 2005,5810: 45- 55.
  • 3Zhu Y M. Efficient Recursive Estimator for Dynamic Systems Without Knowledge of Noise Covarianee [J]. IEEE Trans. Aerospace and Electronic System, 1999,35 ( 1 ) : 102-114.
  • 4徐毓,金以慧.多传感器异步关联航迹的融合[J].系统工程与电子技术,2003,25(11):1318-1320. 被引量:12
  • 5郝惠娟,秦超英,丁维福.噪声方差未知情况下多传感器航迹融合[J].传感技术学报,2006,19(6):2719-2722. 被引量:5
  • 6Bar-Shalom Y. On Track-to-Track Correlation Problem[J]. IEEE Trans. on Automatic Control, 1981,26(2):571-573.
  • 7邓自立、最优滤波理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2000,第7章

二级参考文献10

  • 1刘炯明.数据融合及其应用[M].北京:国防工业出版社,1999..
  • 2Zhu Y M.Efficient Recursive State Estimator for Dynamic Systems Without Knowledge of Noise Covariance[J].IEEE Trans.Aerospace and Electronic System,1999,35(1):102-114.
  • 3Y.Bar-Shalom and Li X R.Multi-target-Multi-sensor Tracking:Principles and Techniques[M].YBS Publishing,1995.Artech House,Boston,1993.
  • 4Hall D L.Mathematical Techniques in Multi-Sensor Data Fusion[M].Artech House,Boston,1992.
  • 5Bar-Shalom Y and Li X R.Estimation and Tracking[M].Artech.Boston,1993.
  • 6He You,Peng Ying-ning,L u Da jin.Composite Filtering in Hybrid Multi-sensor Data Fusion System[C] // Inter Radar Symposium,Germany September,1998:7452748.
  • 7Zhu Y M and Li X R.Best Linear Unbiased Estimation fusion[C]//Proceedings of the Second International Information Fusion Conference,ISIF,Sunnyvale,CA,July 1999,2:1054-1061.
  • 8何友,彭应宁.多级式多传感器信息融合中的状态估计[J].电子学报,1999,27(8):60-63. 被引量:26
  • 9徐毓,金以慧.多尺度小波变换提取趋向的异步航迹关联方法[J].信号处理,2003,19(2):120-123. 被引量:18
  • 10徐毓,金以慧.基于多尺度小波变换和短时分形理论的航迹关联方法[J].控制与决策,2003,18(4):432-435. 被引量:9

共引文献14

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部