摘要
设{X_i)_(i=1)~∞是一维平稳序列,具有公共的未知密度f(x),在(X_i)_(i=1)~∞是α-混合的条件下,给出了f(x)基于前n个观测值{X_i)_(i=1)~n的最近邻密度估计的强相合收敛速度,当f(x)满足适当条件,收敛速度可达到o(n^(-1/3)(ln n)^(4(1+ρ)/3))).
Suppose that {Xi}i=1^∞ is a stationarity random sequence with a common unknown density function f(x). It is assumed that {Xi}i=1^∞is a sequence of α- mixing, we give a strong consistency convergence rate of the neighbor density estimator for f(x), which is based on the first n observed value. Under some conditions, this rate can arrive 0(n^-1/3(ln n)^4(1+p)/3)).
出处
《应用数学与计算数学学报》
2008年第2期79-84,共6页
Communication on Applied Mathematics and Computation
基金
国家自然科学基金资助项目(编号:60572126)
关键词
Α-混合
最近邻密度估计
强相合性收敛
α- mixing, nearest neighbor density estimator, strong consistency convergence