摘要
研究了脉冲泛函微分方程x′(t)=F(t,x(.)),t≥0,t≠tk,Δx(tk)=I(tk,x(t-k)),k=1,2,….的稳定性.采用Liapunov泛函方法和Jensen不等式,通过改进Lyapunov泛函的下界,获得了这类方程的零解一致渐近稳定的新准则,改进了已有文献中的相应结果.
This paper considers a class of impulsive functional differential equations of the form {x′(t)=F(t,x(·)),t≥0,t≠tk,△x(tk)=I(tk,x(tk-)),k=1,2,….By using the Liapunov functional method and Jensen's inequality, some new stability criteria are obtained based on the improvement of the lower bound of Liapunov functional. The corresponding results in the literature are improved.
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
2008年第6期703-706,713,共5页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10071018)
湖南省教育厅重点科研基金资助项目(07A038)