摘要
研究了非线性测量误差模型的影响分析.首先把模型中有误差的不可观测的数据当作是缺失数据,接着用SA-MCMC算法得到了模型参数的最大似然估计,然后考虑用Q函数代替可观测数据的对数似然函数来进行影响分析,得到了建立在Q函数上的局部影响分析的诊断统计量.最后用具体的例子说明了诊断统计量的有效性.
This paper studies the influence analysis for nonlinear measurement error models. We treat the unobservable measurement errors as missing data. The maximum likelihood estimates are obtained by stochastic approximation algorithm with Markov Chain Monte Carlo (SA- MCMC) method. We replace the observable-data log-likelihood function with Q-function. Then, local influence measures are derived based on the Q-function. A real example is given to illustrate the usefulness of diagnostic measures.
出处
《浙江工业大学学报》
CAS
2008年第6期693-698,共6页
Journal of Zhejiang University of Technology
基金
江苏省自然科学基金资助项目(BK2008284)
东南大学校基金(9207011430)