期刊文献+

基于SA-MCMC算法的非线性测量误差模型的影响分析 被引量:1

Local influence analysis for nonlinear measurement error models based on the SA-MCMC algorithm
下载PDF
导出
摘要 研究了非线性测量误差模型的影响分析.首先把模型中有误差的不可观测的数据当作是缺失数据,接着用SA-MCMC算法得到了模型参数的最大似然估计,然后考虑用Q函数代替可观测数据的对数似然函数来进行影响分析,得到了建立在Q函数上的局部影响分析的诊断统计量.最后用具体的例子说明了诊断统计量的有效性. This paper studies the influence analysis for nonlinear measurement error models. We treat the unobservable measurement errors as missing data. The maximum likelihood estimates are obtained by stochastic approximation algorithm with Markov Chain Monte Carlo (SA- MCMC) method. We replace the observable-data log-likelihood function with Q-function. Then, local influence measures are derived based on the Q-function. A real example is given to illustrate the usefulness of diagnostic measures.
出处 《浙江工业大学学报》 CAS 2008年第6期693-698,共6页 Journal of Zhejiang University of Technology
基金 江苏省自然科学基金资助项目(BK2008284) 东南大学校基金(9207011430)
关键词 缺失数据 MH算法 SA-MCMC算法 Q函数 局部影响分析 missing-data MH algorithm SA-MCMC algorithm Q-function local influence analysis
  • 相关文献

参考文献18

  • 1PRENTICE R L. Covariate measurement errors and parameter estimation in a failure time regression model[J]. Biometrika, 1982,69(2):331-342.
  • 2CARROLL R J, SPIEGELMAN C, LANK K,et al. On error-in-variables for binary regression models[J]. Biometrika, 1984,71(1):19-76.
  • 3ARMSTRONG B. Measurement error in the generalized linear model[J]. Comm Statist B, 1985,14(3) :529-544.
  • 4AMEMIYA Y J. Instrumental variable estimator for the errorvariables model [J]. Journal of Econometrics, 1985, 28 ( 3 ) : 273-289.
  • 5STEFANSKI L A, CARROLL R J. Covariate measurement error in logistic regression[J]. Annals of Statistics, 1985, 13 (4) : 1335-1351.
  • 6COOK R D. Detection of influential observations in linear regression[J]. Technometries, 1977,19( 1 ) : 15-18.
  • 7COOK R D. Assessment of local influence (withdiscussion)[J]. J Roy Statist Soe Ser B,1986,48(1) :133-169.
  • 8CRICHLEY F, ATKINSON R A, LU G, et al. Influence analysis based on the case sensitivity function[J]. J Roy Statist Soc Ser B,2001,63(2) :307-323.
  • 9ZHU H T, LEE S Y. Local influence for incomplete data models[J]. J Roy Statist, Soc Se B,2001,63(1):111-126.
  • 10ZHU H T, LEE S Y, WEI B C,et al. Case-delete measures for models with incomplete data [J]. Biometrika, 2001,88 (3):727-737.

二级参考文献11

  • 1[1]Cook, R.D. and Weisberg, S., Residuals and Influence in Regresson, New York: Chapman and Hall, 1982.
  • 2[2]Cook, R.D., Assessment of local influence (with discussion), J.R. Statist. Soc. B, 48(1986),133-169.
  • 3[3]Escobar, L.A. and Meeker, W.Q., Assessing influence in regression analysis with censored data, Biometrics, 48(1992), 507 -528.
  • 4[4]Fuller. W.A.. Measurement Error Models, New York: Wiley, 1987.
  • 5[5]Fung, W.K. and Kwan, C.W., A note on local influence based on normal curvature, J.R. Statist. Soc. B, 59(1997), 839-843.
  • 6[6]Storer. B.E. and Crowley, J., A diagnostic for Cox regression and general conditional likelihoods, J. Amer. Statist.Assoc., 80(1985), 139-147.
  • 7[7]Thomas, W. and Cook, R.D., Assessing influence on regression coefficients in generalized linear models, Biometrika, 76(1989), 741-749.
  • 8[8]Wei, B.C. and Shi, J.Q., On statistical models in regression diagnostics, Ann. Inst. Statist. Math., 46(1994), 267-278.
  • 9[9]Wei, B.C., Exponential Family Nonlinear Models, Singapore: Springer-Verlag, 1998.
  • 10[10]Wei, B.C., Hu, Y.Q. and Fung, W.K., Generalized leverage and its applications, Scand. J. Statist., 25(1998), 25-37.

共引文献5

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部