期刊文献+

一类有限域乘法器的设计实现

Implementation of Bit-Parallel Multiplier over Finite Field
下载PDF
导出
摘要 提出了一种基于有限域内移位三项式基及其弱共轭基的比特并行乘法器的新结构。在由三项式生成的域内,此种结构的比特并行乘法器易于设计者使用硬件描述语言实现。采用Encounter软件对该结构进行布局布线后,发现其面积与关键路径时延都达到了设计目标的要求,在设计性能和硬件约束条件上取得了比较好的平衡。 New structures of bit-parallel multiplier based on shifted polynomial basis (SPB) and its weakly dual ba- sis(WDB) over finite field are proposed. To the fields generated by trinomials, the structure of the proposed bit-par- allel multiplier is easy for a designer to implement the proposed multipliers into hardware for their regular struc- tures. Placement ~ Wire Routing using Encounter indicate that the proposal is thoroughly tested and proved to be good,and it balances the capability requirement and hardware consumption.
出处 《电子器件》 CAS 2008年第6期1933-1935,共3页 Chinese Journal of Electron Devices
基金 国家高技术研究发展计划(863计划)资助项目(2005AA1Z1260) 浙江省科技计划资助项目(2004C11043)
关键词 有限域乘法 并行乘法器 硬件描述语言 移位多项式基 不可约三项式 finite yield multiplication multiplier HDL shifted polynomial basis trinomials
  • 相关文献

参考文献8

  • 1Lidl R and Niederreiter H, Introduction to Finite Fields and Their Applications[M]. New York.- Cambridge Univ. Press,1994.
  • 2Hankerson D, Menezes A and Vanstone S, Guide to Elliptic Curve Cryptography[M]. Springer-Verlag, 2004.
  • 3Knuth D E,The Art of Computer Programming[M]. 1998,2. Addison Wesley.
  • 4Fan H and Dai Y. Fast Bit-Parallel Multiplier for All Trinomials[J]. IEEE Trans. Computers, 2005,54 (4) : 485-490.
  • 5Wu H, Hasan M A, Blake I F. New Low-Complexity Bit-Parallel Finite Field Multipliers Using Weakly Dual Bases[J]. IEEE Trans. Computers,2002,47(11) : 1223-1234.
  • 6Fenn S T J, Benaissa M, Taylor D. Multiplication and Division over the Dual Basis[J]. IEEE Trans. Computers,1996,45(3):319-327.
  • 7SMIC O. 35 μm, 3. 3 V Optimum Silicon SC Library[S]. Synopsys Corp. 2003.
  • 8SMIC 0. 18 μm Logic18 Process 1.8-Volt SAGE-XTM Stand- ard Cell Library Databook[S], Artisan Components, 2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部