摘要
蛋白质间的相互作用在生命体中扮演着关键的角色.将改进的共鸣识别模型应用于预测酵母蛋白质间的相互作用,并改用信噪比为判别参数.此判别参数与之前的判别参数——峰值相比,在保证较高预测精度的基础上,还可以很好地区分阳性数据和随机数据,从而也就能较好地处理过度拟合的问题.
Protein-protein interactions play a critical role in the living body. In this work, the modified resonant recognition model is applied to predict interactions of the yeast proteins. Signal-to-noise ratio (SNR) is selected as a discriminant parameter. Comparing with the previously used peak value, SNR can show significant differences between the positive data and the random data more clearly without compromising prediction precision. Therefore, the proposed method can solve the over-fitting problem.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第6期604-610,共7页
Journal of Shanghai University:Natural Science Edition
基金
国家高技术研究发展计划(863计划)资助项目(2006AA02Z190)
关键词
共鸣识别模型
离散小波变换
随机数据检测
酵母蛋白质
信噪比
modified resonant recognition model
discrete wavelet transform
random data test
yeast proteins
signal-to-noise ratio (SNR)