期刊文献+

基于信噪比的蛋白质相互作用的预测 被引量:4

Prediction of Protein-Protein Interactions in Term of Signal-to-Noise Ratio
下载PDF
导出
摘要 蛋白质间的相互作用在生命体中扮演着关键的角色.将改进的共鸣识别模型应用于预测酵母蛋白质间的相互作用,并改用信噪比为判别参数.此判别参数与之前的判别参数——峰值相比,在保证较高预测精度的基础上,还可以很好地区分阳性数据和随机数据,从而也就能较好地处理过度拟合的问题. Protein-protein interactions play a critical role in the living body. In this work, the modified resonant recognition model is applied to predict interactions of the yeast proteins. Signal-to-noise ratio (SNR) is selected as a discriminant parameter. Comparing with the previously used peak value, SNR can show significant differences between the positive data and the random data more clearly without compromising prediction precision. Therefore, the proposed method can solve the over-fitting problem.
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期604-610,共7页 Journal of Shanghai University:Natural Science Edition
基金 国家高技术研究发展计划(863计划)资助项目(2006AA02Z190)
关键词 共鸣识别模型 离散小波变换 随机数据检测 酵母蛋白质 信噪比 modified resonant recognition model discrete wavelet transform random data test yeast proteins signal-to-noise ratio (SNR)
  • 相关文献

参考文献10

  • 1朱新宇,沈百荣.预测蛋白质间相互作用的生物信息学方法[J].生物技术通讯,2004,15(1):70-72. 被引量:13
  • 2COSIC I. The resonant recognition model of macromolecular bioactivity : theory and application [ M ]. Basel : Birkhauser Verlag, 1997 : 1-26.
  • 3NIKOLA S, PASKO K, BISERKA P, et al. Resonant recognition model defines the secondary structure of bjoactive proteins [ J]. Croatica Chemica Acta, 2002, 75(4) : 899-908.
  • 4COSIC I, FANG Q. Prediction of protein active site using digital signal processing methods [C]// The 2nd International Conference on Bioelectromagnetism, Melbourne, Australia. 1998:69-70.
  • 5PIROGOVA E, COSIC I. Development of new computational amino acid parameters for protein structure or function analysis within the resonant recognition model [C]// The 23rd IEEE EMBS Annual International Conference. 2001:2890-2893.
  • 6飞思科技产品研发中心.MATLAB6.5辅助小波分析和应用[M].北京:电子工业出版社,2003:151-184.
  • 7冉启文,潭立英.小波分析与傅里叶变换及应用[M].北京:电子工业出版社,2003:151-184.
  • 8万跃华,何立民.网上生物信息学数据库资源[J].情报学报,2002,21(4):497-512. 被引量:33
  • 9COSIC I, FANG Q. Evaluation of different wavelet constructions (designs) for analysis of protein sequences [C]// 2002 14th International Conference on Digital Signal Processing. 2002 : 1117-1120.
  • 10CHAFIA T, FANG Q, COSIC I. Protein sequence comparison based on the wavelet transforms approach [J]. Protein Engineering, 2002, 15(3) :193-203.

二级参考文献46

  • 1-.中国首个人类基因数据库在沪建[J].中国神经科学杂志,2000,16(2):143-143.
  • 2万跃华.网上免费的生物信息学数据库[J].图书馆通讯,1999,1.
  • 3万跃华.请免费使用各类基因组数据库[J].图书馆通讯,2000,2.
  • 4[1]Fields S, Song O. A novel genetic system to detect protein-protein interactions[J]. Nature, 1989,340(6230):245
  • 5[2]Gavin AC, Bosche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes [J].Nature, 2002,415(6868): 141
  • 6[3]Ho Y, Gruhler A, Heilbut A, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry[J]. Nature, 2002,415(6868):180
  • 7[4]Zhu H, Bilgin M, Bangham R,et al. Global analysis of protein activities using proteome chips[J]. Science,2001,293(5537):2101
  • 8[5]Shen BR, Chen XY. BOC-MP study on the mechanism of partial oxidation of Ch3OH to HCHO ovr a silver surface and the promoting effect of halogen to the catalyst[J]. Surface Science, 1998,408(1-3):128
  • 9[6]Shen BR, Vihinen M. RankViaContact: Ranking and visualisation of amino acid contacts[J]. Bioinformatics, 2003,19(0):1
  • 10[7]Legrain P, Wojcik J, Gauthier JM. Protein-protein interaction maps:a lead towards cellular functions[J]. Trends Genet,2001,17(6):346

共引文献45

同被引文献41

  • 1刘翔,王翼飞.应用改进的共鸣识别模型预测蛋白质相互作用[J].上海大学学报(自然科学版),2006,12(1):69-73. 被引量:4
  • 2飞思科技产品研发中心.MATLAB6.5辅助小波分析和应用[M].北京:电子工业出版社,2003:151-184.
  • 3JANSEN R, Yu H, GREENBAUM D, KLUGER Y, KROGAN N J, CHUNG S, EMILI A, SNYDER M, GREENBLATT J F, GERSTEIN M. A Bayesian networks approach for predicting protein-protein interactions from genomic data[J]. Science, 2003, 302(5644): 449-453.
  • 4WANG Jin, LI Chenhe, WANG Erkang, WANG Xidt. Uncovering the rules for protein-protein interactions from yeast genomic data[J]. Proceedings of the National Academy of Sciences, 2009, 106(10): 3752-3757.
  • 5SOONC T, WRZESZCZYNSKI K O, ROST B. Physical protein-protein interactions predicted from microarrays[J]. Bioinformatics, 2008, 24(22): 2608-2614.
  • 6SHEN Juwen, ZHANG Jian, LuO Xiaomin, ZHU Weiliang, Yu Kunqian, CHEN Kaixian, LI Yixue, JIANG Hualiang. Predicting protein-protein interactions based only on sequences information[J]. Proceedings of the National Academy of Sciences, 2007, 104(11): 4337-4341.
  • 7BEN-HUR A, NOBLE W S. Kernel methods for predicting protein-protein interactions[J]. Bioinformatics, 2005, 21(Supplement 1): i38-i46.
  • 8GOMEZ S M, NOBLE W S, RZHETSKY A. Learning to predict protein-protein interactions from protein sequences[J]. Bioinformatics, 2003, 19(5): 1875-1881.
  • 9刘向东,刘拥军,黄保续,谢仲伦.蛋白质结构预测-支持向量机的应用[M].北京:科学出版社,2008:61-72,96-100.
  • 10CHANG C C, LIN C J. LIBSVM: a library for support vector machine. Software available at http://www. csie.ntu.edu.tw/cjlin/libsvm, Accessed 11 August 2008.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部