期刊文献+

关于不完全r-自正交拉丁方的存在性

Study on Existence of Incomplete r-self-orthogonal Latin Squares
下载PDF
导出
摘要 如果2个n阶不完全拉丁方重叠后正好产生r个不同的有序对,则称它们是r-正交的,记作r-IMOLS(n,u),其中u为缺少的子拉丁方的阶数.进一步,如果第2个拉丁方是第1个拉丁方的转置,则称它们是r-自正交的,记作r-ISOLS(n,u).本文给出当u∈{1,2,3,4}时,r-ISOLS(4m+u,u)的存在性。 Two incomplete Latin squares of order v are r -orthogonal if their superposition produces exactly r distinct ordered pairs, denoted by r-IMOLS (n, u), where u is the order of holey Latin square. In addition, if the second square is the transpose of the first one, then the first square is deemed to be r -self-orthogonal, denoted by r -ISOLS (n,u). In this paper, the existence ofr -ISOLS (4m + u,u) is investigated for the case u ∈ {1,2,3,4}.
作者 余伟 徐允庆
机构地区 宁波大学理学院
出处 《宁波大学学报(理工版)》 CAS 2008年第3期358-363,共6页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 浙江省自然科学基金(Y607026) 宁波市自然科学基金(2006A610094)
关键词 r-自正交 拉丁方 截态 r-orthogonal Latin square transversal
  • 相关文献

参考文献9

  • 1Belyavskaya G B. r-orthogonal quasigroups Ⅰ[J]. Math Issed, 1976, 39:32-39.
  • 2Belyavskaya G B. r-orthogonal quasigroups Ⅱ[J]. Math Issed, 1977, 43:39-49.
  • 3Belyavskaya G B. r-orthogonal Latin squares[C]//Denes J, Keedwell A D. Latin squares: New developments. Amseteram, North-Holland: Elsevier, 1992:169-202.
  • 4Colbourn C J, Zhu L. The spectrum of r-orthogonal Latin squares[C]//Colboum C J, Mahrnoodian E S. Combinatorics Advances. Boston BA: Liuwer Academic Press, 1995:27-48.
  • 5Zhu L, Zhang H. A few more r-orthogonal Latin squares[J]. Discrete Math, 2001, 238:183-191.
  • 6Zhu L, Zhang H. Completing the spectrum of r-orthogonal Latin squares[J]. Discrete Math, 2003, 268:343-349.
  • 7Xu Yunqing, Chang Yanxun. Existence of r-orthogonal Latin squares[J]. Discrete Math, 2006, 306:124-146.
  • 8Abel R J R, Bennett F E, Zhang H, et al. A few more incomplete self-orthogonal Latin squares and related designs[J]. Austral J Combin, 2000, 21:85-94.
  • 9Xu Y, Chang Y. On the spectrum of r-orthogonal Latin squares[J]. Discrete Math, 2004, 279:479-498.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部